WHY DEMAND UNCERTAINTY CURBS INVESTMENT:
EVIDENCE FROM A PANEL OF ITALIAN MANUFACTURING FIRMS

Maria Elena Bontempi*, Roberto Golinelli** and Giuseppe Parigi***

Abstract

From a theoretical point of view, uncertainty over the demand for a firm’s product may have unclear effects on investments, as it depends on a number of factors, such as the production technology and the degree of competition in the product market. Most of the empirical research has been based on cross-section analysis, which has prevented a deeper investigation of the interplay of different factors in the temporal dimension. The aim of this paper is to extend the results of the empirical literature by using a panel of Italian firms over a fairly long period of time (1996-2004), covering a complete business cycle. A key finding of our paper concerns the role played by the degree of the competition faced by Italian firms over the 1996-2004 period. More specifically, the gradual loss of market power experienced by Italian manufacturing firms along with the increasing flexibility of the labour input may have contributed to weaken the negative effect of uncertainty on investment decisions.

Index

1. Introduction ........................................................................................................................................ 2
2. The model............................................................................................................................................ 6
3. The data............................................................................................................................................... 7
4. Baseline estimates and robustness checks......................................................................................... 11
5. The effect of uncertainty in sub-samples........................................................................................... 15
   5.1 Irreversibility and market power ................................................................................................. 15
   5.2 Labour flexibility .......................................................................................................................... 18
6. The effect of uncertainty over time ................................................................................................... 21
7. The uncertainty-investment relationship: just a cyclical phenomenon?............................................ 28
Appendix A1: Data sources and definitions of variables ...................................................................... 31
   A1.1 – Effective and planned investments ......................................................................................... 31
   A1.2 – Stock of capital ........................................................................................................................ 31
   A1.3 – Dummy and other control variables ....................................................................................... 32
Appendix A2: Matching investment plans and realisations .................................................................. 35
References ............................................................................................................................................. 39

JEL codes: E22, C33
Keywords: Investment plans, demand uncertainty, market power, survey data, panel estimation

(*) University of Ferrara, Dept. of Economics, e.bontempi@economia.unife.it;
(**) University of Bologna, Dept. of Economics, golinell@spbo.unibo.it (corresp. author);
(***) Bank of Italy, Research Department, giuseppe.parigi@bancaditalia.it
1. Introduction

In the last thirty years the debate about the investment-uncertainty relationship has flourished. The reason of such an interest is to be found primarily in the difficulty to derive unique conclusions about the sign and the relevance of this relationship.

According to Hartman (1972) and Abel (1983, 1985) the effect of uncertainty on investment decisions is positive, or at least non-negative, for firms operating under perfect competition, with a constant return to scale (CRS) technology and a symmetric adjustment cost function for capital. With the additional assumption of costlessly adjustable labour input, it can be shown that the marginal value of capital is a convex function of prices. In a stochastic context an increase in uncertainty raises the value of investment, and therefore of investment expenditure irrespective of the assumption on the investment cost function.

Following the analyses of Bernanke (1983) and Mc Donald and Siegel (1986), Bertola (1988) and Pindyck (1988) demonstrate that in a monopolistic and stochastic setting an increase in uncertainty over the evolution of demand reduces investment via an irreversibility effect. The basic idea is the concept of “perpetual call option” value of an investment plan: with more uncertainty the value of the option to postpone investment increases (in order to wait for new information) so that the decision to invest is delayed. In other words, an irreversible investment entails an opportunity cost increasing with uncertainty.

According to Caballero (1991; see also Abel and Eberly, 1994, 1996, 1997) the crucial hypothesis is not the irreversibility of the capital goods used by the firm but the hypothesis on the structure of the product market: for a competitive firm with a CRS technology, even under irreversibility of capital goods the Hartmann-Abel approach may prevail, thus generating a non-negative relationship between investment and uncertainty. This is due to the fact that with perfect competition as the marginal revenue product of capital does not depend on the capital stock: current investment has thus no effect on the future profitability of the firm, so that the firm has never a motive to disinvest. Under imperfect competition the marginal profitability of capital depends on the level of capital via the product demand function and given (asymmetrical) irreversibility: “having too much of capital is “worse” than having too little of it since increasing the stock of capital is cheaper than decreasing it” (Caballero, 1991, p. 286).

---

1 A previous version of this paper was presented at the 28th CIRET Conference on Cyclical Indicators and Economic Policy Decisions (Rome, 20-23 September 2006). Many thanks are due to: Piero Cipollone, Marco Magnani, Fabiano Schivardi, Giordano Zevi and to conferences participants for helpful comments. The usual caveats apply. The views contained here are those of the authors and do not necessarily reflect those of the institutions for which they work.
Pindyck (1993) shows however that the irreversibility effect may nevertheless prevail even for firms adopting a CRS technology and facing perfect competition: in this case it is necessary to consider explicitly the effects of industry-wide demand uncertainty on the equilibrium of a competitive industry (in this context Sakellaris, 1994, shows that the relevant point is the elasticity of demand; more specifically, he shows that the irreversibility effect dominates for firms with an inelastic demand curve; see also Caballero and Pyndick, 1996).

In an attempt to shed some light on the ambiguity of the uncertainty effect, Lee and Shin (2000) consider more explicitly the role of the labour input. They show that the variability of labour tends to “convexify” the firm profit function so that uncertainty may raise investment. The intuition of this result is that the variability of one production factor can compensate for the irreversibility of the other.

Even from this very concise overview of the literature (see Carruth et al., 2000 for a more detailed survey) it appears that the shape of the investment-uncertainty relationship depends crucially on the interplay of the different hypotheses about the form of the product market and the technological characteristics of the production function and of its inputs. This leaves much room for the empirical analysis in measuring the consequences of the assumptions on the features of the capital goods of the firm, on the elasticity of product demand and, more generally, on the technology (with particular emphasis on the role of the labour input). This is what we try to do in this paper.

A general result of the empirical literature is that the effect of uncertainty on investment decision is negative and significant (see Carruth et al., 2000, for a review and more recently, Greasley and Madsen, 2006). However, as much of the literature has been based on aggregate data is difficult to find a proper assessment of the role played by the different assumptions about firm characteristics. Moreover, even in empirical analyses at micro level (see for example Lehay and Whited, 1996), the absence of a suitable data set, with information on irreversibility, market power etc., has prevented a much deeper investigations of the behaviour of different groups of firms (a partial exception is Chirinko and Scaller, 2004, who present estimates of the importance of irreversibility for a panel of U. S. firms). An indirect evidence of the complexity concerning the link between investment and uncertainty is the finding of a non-linear relationship, which has been related to the interplay of different

---

2 This is even more evident when one considers other contributions based on the analysis of different hypotheses about the investment process, such as the role of investment lags (Bar-Ilan and Strange, 1996); the effects of the costs of expanding the capital stock (Abel et al., 1996); the effects of past investment decisions on the current investment (the so-called “hang-over” effect of Abel and Eberly, 1999).
thresholds triggering the investment decisions (see Barnett and Sakellaris, 1998; Abel and Eberly, 2002, and Bo and Lensink, 2005).

One of the main problems faced by empirical analyses is the absence of a reliable measure of uncertainty. The great variety of proxies proposed in the literature may at least partly explain the rather inconclusive evidence about the nature of the investment-uncertainty relationship. A possible solution to this problem is to derive a measure of uncertainty directly from the entrepreneurs, by exploiting self-reports of expectation elicited in the form of subjective probabilities (see Mansky, 2004, for a theoretical analysis of expectation measurement in economics).

Guiso and Parigi (1996, 1999) were the first to use subjective probabilities to quantify the uncertainty surrounding the expected evolution of the demand faced by a firm. Using the rich database of the Survey on Investments in Manufacturing (SIM), conducted annually by the Bank of Italy, they provide evidence on the link between uncertainty and investment and, above all, on the role played by irreversibility and by the degree of competition in the product market. In particular, they show that the uncertainty effect is negative and stronger the higher the degree of irreversibility and the firms market power. ³

Our paper draws on Guiso and Parigi analysis, with an important extension. While they limit their empirical investigation to the cross-section dimension, we use a panel of Italian firms over a fairly long period of time (1996-2004), covering a complete business cycle: the expansion from 1996 to 2000, and the recession in the following four years. The availability of longitudinal data allows to account for unobservable individual firm differences (such as risk aversion) and for more aggregate (industry-wide and/or macroeconomic) shocks.

The results of our analysis show that in our case the investment-uncertainty relationship is fundamentally negative: a reduction of uncertainty from the third to the first quartile of its distribution implies an elasticity of 1.3 per cent of investment plans. In particular, according to the irreversibility or real option theory of investment for firms which employ more irreversible capital, the effect of uncertainty seems to be stronger as well as for firms characterised by a lower degree of competition. This last result appears to be even stronger when we consider the sample of firms which export more than half of their production. Finally, thanks to the richness of our data set, we have been able to tackle directly the issue of labour input flexibility, which is an original part of our analysis. In particular, we show that the effect of uncertainty on investment plans seem to weaken for firms which can

³ Patillo (1998) and Lensink et al. (2005) obtain fairly similar results by applying the same approach to a sample of industrial firms in Ghana and in the Netherlands, respectively.
exploit a more flexible labour input, a result consistent with the theoretical analysis of Lee and Shin (2000). These findings hold irrespectively of a number of robustness checks, such as the explicit consideration of liquidity constraints or the assumption of a non-linear econometric relationship between uncertainty and investment.

Though the panel estimates appear to be fairly stable over the period under scrutiny, the estimation in repeated cross-sections reveal a dynamic pattern of the uncertainty parameter estimate, which seems to be characterised by a positive trend; in particular, in the last two years of the sample it is not significantly different from zero. This is a clear example of the limitations which affect cross-section analyses. In our case, the cross-section estimates computed for the initial and the final years of the period would have given opposite insights about the investment-uncertainty relationship. Longitudinal data circumvent this problem: they allow to frame the analysis in the more general dynamic context by exploiting also the information about variability over time. We have therefore been able to properly account for the evolution which has characterised the Italian manufacturing sector in a period of deep changes at both the institutional and the technological level.

Our explanation of the evolution of the uncertainty effect emphasizes the influence of the increase in the competition faced by Italian firms in the period under scrutiny. Uncertainty is shown to interact with our proxy of the degree of the market power of the firm: the gradual weakening of its effect on investment plans is linked with the correspondent increase of the competition faced by the firm as suggested by the Hartman-Abel approach. This finding is reinforced when we consider explicitly the competition from foreign firms and the flexibility of the labour input. A number of factors may lie behind this evolution. First, the adoption of the Euro has definitely prevented the so called “competitive devaluations” of the Lira, frequently occurred in the past, which helped Italian firms to counteract the competition on foreign markets. Second, the fast and contemporaneous developments of new industrialised countries (such as China and India) which put strong competitive pressures especially in low-technology sectors where Italian firms are traditionally specialised. Third, over the last ten years the functioning of the labour market has been significantly altered to achieve a higher flexibility in the use of the labour input. All in all these events seem to suggest a general change toward an environment more similar to the stylized model underlying the Hartman-Abel approach.

The paper is organised as follows. Section 2 briefly describes the theoretical model used in the empirical analysis. Section 3 presents the main features of our data and computes preliminary cross-section estimates of the relationship of interest. Section 4 reports baseline
estimation results over the full sample and a number of variants to assess for their robustness. Section 5 focuses on model’s estimates in sub-samples selected on the basis of different degrees of irreversibility of the installed capital, of market competition and of labour flexibility. The issue of the stability over time of the parameter estimates is assessed in Section 6, especially in relation to the evolution of the degree of competition (measured by the price-cost margin). Section 7 contains some general comments on the results. In addition, Appendix A1 gives the details about data sources and definitions, and Appendix A2 assesses the effects on our estimation results of using data on realised instead of planned investments.

2. The model

The empirical model used for estimation is a panel version of that proposed in Guiso and Parigi (1996, 1999) and is based on the idea of the irreversibility of the investment decision and that the demand threshold that triggers investment rises with uncertainty. Abel and Eberly (1994, 1996, and 1997) show that the trigger point is equal to the user cost of capital adjusted to account for irreversibility and uncertainty. In particular, uncertainty raises the value of the user cost and so reduces the responsiveness to demand of both the decision of investing, and its amount. Let $mvp = a(K/y)^{-\gamma}$ be the marginal value product of capital evaluated at the current level of the stock of capital, $K$, and of demand $y$; $a$ is a constant and $0 < \gamma < 1$ a parameter. Let $c(u)$ be the user cost of capital which, under irreversibility, is positively influenced by uncertainty about future demand, $u$.

With no adjustment costs and ignoring depreciation, the firm’s optimal capital stock is $K^* = y(c(u)/a)^{-\gamma}$ and the corresponding investment policy is: $I = K^* - K > 0$ if $mvp > c(u)$ or $K < y(c(u)/a)^{-\gamma}$. When $mvp \leq c(u)$, or $K \geq y(c(u)/a)^{-\gamma}$, investment should be zero. This case is a natural test of the irreversibility theory but it is very difficult to implement because of the extreme rarity of observations with zero investment (lower than 3 per cent of the total number of our observations). This occurs especially when using data on total investment, which is an aggregate of different types of capital goods, such as structures, equipment and so on: firms may plan zero investment in structures as well as positive investment in other categories.\(^4\) However the virtual absence of zero-investment observations

---

\(^4\) See Bloom et al. (2003, 2006) for an analysis of the irreversibility theory with aggregation effects. Guiso and Parigi (1999) presents some estimates for three different types of capital goods, equipment, structures and vehicles, confirming the results obtained for the total aggregate; more recently, Bontempi et al. (2004) extend the fundamental $q$ approach to the case of two capital inputs: equipment and structures.
should not alter the relationship between uncertainty and the user cost of capital which is at
the roots of our analysis of investment decisions.

We therefore concentrate on the case \( mvp > c(u) \), so that \( K^* = y(c(u) / a)^{-\gamma} \). In this
case and with panel data, the investment rate can be shown to be a function of demand,
uncertainty and the inherited capital stock according to the following empirical equation:

\[
\frac{I_{it+1}}{K_{it}} = \alpha_i + \lambda_t + \alpha_1 \frac{Y_{it+1}}{K_{it}} \left[ 1 + \alpha_2 \frac{u(Y_{it+1})}{K_{it}} \right] + \alpha_3 \frac{I_{it}}{K_{it-1}} + \alpha_4 Z_{it} + \epsilon_{it+1}
\]

where subscripts \( i \) and \( t \) respectively indicate the \( i \)th company \((i = 1, 2, …, N)\) and the year \( t \) \((t = 1, 2, …, T)\). \( K_{it} \) is the stock of capital measured at the end of \( t \); \( I_{it+1} \) and \( I_{it} \) respectively represent the investment planned at year \( t \) for the following year, and the realised investment in \( t \); \( Y_{it+1} \) is the level of demand expected at the end of year \( t \) for the following year; \( u(Y_{it+1}) \) represents firm’s uncertainty about demand in \( t+1 \) as perceived in \( t \). All previous variables are measured at constant prices. \( Z_{it} \) is a vector of additional controls, to account for exceptional events, such as extraordinary operations, and \( \epsilon_{it+1} \) is the stochastic error term referring to investment plans in \( t+1 \). Fixed effects \( \alpha_i \) and \( \lambda_t \) refer to firms and time; they account for individual unobservable characteristics influencing the investment-uncertainty relationship, and for a degree of dependency over time across companies due to collectively significant effects. Parameters \( \alpha_1 \), \( \alpha_2 \) and \( \alpha_3 \) are scalars, \( \alpha_4 \) is a vector. Detailed definitions and data sources are in Appendix A1.

According to the irreversibility literature, the \textit{a priori} sign of \( \alpha_2 \) should be negative
and significant. However, if the Hartman-Abel set-up applies, \( \alpha_2 \) should be positive or not
significantly different from zero. The elasticity of investment plans to expected demand and
the semi-elasticity of investment plans to the uncertainty can be computed with parameters’
estimates and a set of alternative statistics of the sample distribution of the variables.

3. The data

Our dataset is constructed on the basis of three main sources: the Survey on
Investment in Manufacturing (SIM), the Company Account Data Service (CADS), and the
breakdown by sector of the National Account data (NA).

The main source is SIM, annually conducted by the Bank of Italy on a sample of
industrial Italian firms. The composition and the dimension of the sample have evolved over
the years. The main change occurred in 2001 when small firms, i.e. those with less than 50 employees, entered into the survey. By considering the whole sample of manufacturing firms over the period 1996-2004, there are a total number of 17,248 observations (company-year cases). Table 1 reports the number of observations by year and by company size (measured in classes of employment). However, the questionnaire for firms with less than 50 employees is more simplified and does not include the section on uncertainty. We are therefore forced to ignore these firms and the no-reply cases ending with a sample of 8,633 observations.

The SIM database is very rich and contains many pieces of original information that cannot be found in other sources. This is the case of investment plans, expected demand and the range between its minimum and maximum growth rate expected one year ahead (henceforth, the min-max range); questions about liquidity constraints; some information on the characteristics of the second-hand market for capital goods, and so on (about the SIM database, see Banca d’Italia, 2006).

<table>
<thead>
<tr>
<th>SIM MANUFACTURING FIRMS SAMPLE BY YEAR AND SIZE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size class&lt;sup&gt;1&lt;/sup&gt;</td>
</tr>
<tr>
<td>Year</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1996</td>
</tr>
<tr>
<td>1997</td>
</tr>
<tr>
<td>1998</td>
</tr>
<tr>
<td>1999</td>
</tr>
<tr>
<td>2000</td>
</tr>
<tr>
<td>2001</td>
</tr>
<tr>
<td>2002</td>
</tr>
<tr>
<td>2003</td>
</tr>
<tr>
<td>2004</td>
</tr>
<tr>
<td>1996-2004</td>
</tr>
</tbody>
</table>

<sup>1</sup> Size is measured by classes of employees, \( L_i \) defined as the average of the \( i \)th company’s number of employees. <sup>2</sup> Though the extension of SIM survey to firms with less than 50 employees started in 2001, few small firms fall in this class before 2001 because of employees’ averaging over time.

To compute a proxy for uncertainty, we use the min-max range of the expected growth rate of demand. Let \( g_{it} \) be the growth rate of the \( i \)th company’s demand at constant prices for \( t+1 \) as perceived in \( t \) and \( SAL_{it} \) the value at current prices of the \( i \)th company’s sales in \( t \); both variables can be found in the SIM. The expected one year-ahead level of sales at constant prices is \( Y_{it+1} = (1 + g_{it+1}) Y_{it} \), where \( Y_{it} = \frac{SAL_{it}}{PY_{it}} \) and \( PY_{it} \) is the individual sales’ deflator,
both from SIM. If we define the uncertainty about the future demand growth rate as the min-max range of the expected growth rate at constant prices reported by the SIM respondents, we obtain the following definition of uncertainty:

\[
(2) \quad u(Y_{it+1}) = u(g_{it+1}) Y_{it} = (g_{it+1}^{\text{max}} - g_{it+1}^{\text{min}}) Y_{it}
\]

The proxy of uncertainty in (2) simplifies that used by Guiso and Parigi, who exploit a part of the questionnaire where respondents were asked, *una tantum* in 1994, to report their whole probability distribution of the expected growth rate of demand.

Though using less information, definition (2) has a number of the advantages because it provides time series data (for all the years over the 1994-2004 period) and it is a simple question, thereby limiting the presence of errors in the reports.

The SIM database is far from being complete for the aims of the present study as it does not contain some relevant variables, such as the capital stock, the cash flow, and other information to compute the price-to-cost margin. These pieces of information can however be found in the CADS database. After having merged the two datasets, the total number of available observations for the empirical analysis drops to 7,642, our final base-sample.

Notwithstanding the loss of observations due to the different choices and to the merging operations described above, the final sample is a fairly satisfactory representation of the composition of the Italian manufacturing firms by manufacturing sector and by geographical location (see Table 2).

A very preliminary step of our empirical analysis is the estimation equation (1) in repeated cross-sections, *i.e.* one for each year from 1996 to 2004. This allows us to have a set of results which can be compared with what can be found in most of the empirical literature and at the same time to provide some evidence about the temporal evolution of the parameter estimates.

---

5 Sales’ individual deflators are obtained by applying the SIM growth rate for year *t* to the previous year NA deflator level of the sector to which the firm belongs. We directly use NA sectoral deflator levels when SIM growth rates are not available.

6 To further assess the point, we run a probit regression for the probability of firms with more than 49 employees of reporting the min-max range against time dummies and a set of observable characteristics, such as (industry, location, type of ownership, size, and share of exported production (more information about dummy variables is in the Appendix 1.3). The only systematic effect concerns public and large firms, which are less likely to report the range because the respondents are not close enough to the top management to be able to answer properly. These results, not reported, are available upon request.

7 Sectoral NA data are the source of depreciation rates and are also used to deflate nominal variables when SIM prices are missing. Appendix A1 contains detailed definitions of our variables of interest.
As the cross-section specification of equation (1) does not allow to estimate the fixed company effects $\alpha_i$, we try to compensate for their exclusion by including in the $Z$-vector a set of time-invariant dummy variables to proxy for firm’s unobservable heterogeneity in technology, market structure, and management tastes. The time effects $\lambda_t$ are proxied by the intercept of equation (1), whose estimates are allowed to change in repeated cross-sections.

<table>
<thead>
<tr>
<th>FIRMS % COMPOSITION BY INDUSTRY AND BY LOCATION</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Manufacturing sectors:</strong></td>
</tr>
<tr>
<td>Food, drink and tobacco</td>
</tr>
<tr>
<td>Textiles and clothing</td>
</tr>
<tr>
<td>Leather and footwear</td>
</tr>
<tr>
<td>Timber and wood furniture</td>
</tr>
<tr>
<td>Paper and publishing</td>
</tr>
<tr>
<td>Chemicals</td>
</tr>
<tr>
<td>Rubber and plastics</td>
</tr>
<tr>
<td>Minerals</td>
</tr>
<tr>
<td>Metals and metal goods</td>
</tr>
<tr>
<td>Mechanical engineering</td>
</tr>
<tr>
<td>Electrical, instrument engineering</td>
</tr>
<tr>
<td>Motor and vehicles</td>
</tr>
<tr>
<td>Other</td>
</tr>
<tr>
<td><strong>Total</strong></td>
</tr>
</tbody>
</table>

| **Geographical location:**                   |
| North-West                                   | 33.12 | 42.44 |
| North-East                                   | 21.85 | 15.87 |
| Centre                                       | 21.82 | 24.95 |
| South and Islands                            | 23.21 | 16.74 |
| **Total**                                    | 100.00 | 100.00 |


Figure 1 reports the temporal path of the estimated elasticity of planned investments to the expected demand, and of the $\alpha_2$ parameter estimates; the dotted lines are the corresponding 90% confidence intervals. Point estimates are often at least 10% significant (the elasticity of investment to demand lies in the 0.2-0.4 range, and the estimate of $\alpha_2$ is always negative), and decrease in absolute value over time. The $\alpha_2$ estimates however lose their significance in the last two years of the sample.

The last point suggests that, if we had had only (cross-section) data for a single year in the second half of the sample, we would have probably estimated a low and scarcely significant effect of uncertainty on investments, and a low elasticity of planned investments to

---

These dummy variables refer to industry, location, size, type of ownership, merge-acquisition operations, and zero cases of both effective investment and planned demand (details are in Appendix A1.3).
expected demand. The opposite would have occurred if we had had only cross-section data for a single year in the first half of the sample, as in Guiso and Parigi (1999).

![Graph of Expected Demand and Uncertainty Effects on Investment Over Time](image)

(\textsuperscript{1}) The dotted lines delimit the corresponding 90\% confidence intervals.

4. Baseline estimates and robustness checks

The information about the companies in our sample may be better exploited by using the two-ways panel approach, \textit{i.e.} by estimating equation (1) with fixed individual and time effects.\textsuperscript{9} In this way, we can avoid the biases due to the omission of unobservable time-invariant individual effects, such as entrepreneur’s risk aversion, and of collectively significant macroeconomic effects (hence almost invariant for all companies), such as industry-wide shocks, macroeconomic cyclical effects, widespread optimism-pessimism, or risk aversion shifts over time. A relevant feature of equation (1) specification is that it is not dynamic in strict sense. In fact, the explanatory variable $\frac{I_{it} \ K_{it-1}}{}$ differs from one-year lagged dependent variable, that is $\frac{I_{it} \ K_{it-1}}{}$, because of the relevant discrepancies between \textit{ex ante} plans and \textit{ex post} realisations due to shocks and news affecting company’s behaviour after plans are set (details are in Appendix A2). In this context the demeaning of the variables (the so-called within transformation) to account for fixed effects does not necessarily entail

\textsuperscript{9} The alternative random individual effects estimator is prone to be biased by the correlation between individual effects and the explanatory variables. Therefore we prefer, as usual in the literature, to rely on the at least consistent fixed effects estimator as suggested by the outcome of the Hausman (1978) specification test.
the endogeneity, as it would be in a truly dynamic model. Therefore, equation (1) parameters can be estimated by applying ordinary least squares (OLS) to within-transformed data (however, the OLS-within estimates are also compared with those obtained with a suitable GMM estimator for dynamic panels). Parameters’ standard errors are always adjusted to account for generic heteroskedasticity (see White, 1980); hereafter, we will refer to them as “robust” standard errors.

Table 3 reports parameter estimates and robust standard errors of six variants of the equation (1) specification obtained by using all the available data: an unbalanced panel of 2,141 companies (the number of time observations for each company range from 1 to 9 years, with an average of 3.57 years). The sample dimension is not constant across different columns depending on the specific regressors used in the alternatives.

The first column of Table 3 reports the estimates of equation (1). The level of expected demand has a positive and significant effect on investment plans \((a_1)\): evaluated at the sample medians of expected demand and of uncertainty, the planned investments elasticity to expected demand is not different from unity; it halves when evaluated at the first quartile of demand and doubles with the third quartile (point estimates and robust standard errors are reported in the lower part of column 1 of Table 4).

Demand uncertainty, interacted with the expected demand, has a significantly negative effect on investment plans \((a_2)\), as predicted by investment models based on irreversibility. Evaluated at sample medians, the elimination of demand uncertainty would increase the investments planned for the following year by 0.8 percent (1.3 per cent when uncertainty is reduced from the third to the first quartile of the sample distribution; see the lower part of column 1 of Table 4).

As far as the specification of equation (1) is concerned, it could be argued that the interaction between uncertainty and expected demand may actually be capturing a second-order term in the Taylor approximation of a non-linear relationship between investment plans and expected demand. Furthermore, it could be that uncertainty on one-year-ahead demand growth has also a direct \((i.e.\ not\ passing\ through\ demand\ dampening)\) effect on investments.

The second column of Table 3 reports the estimates of a specification where the squared expected demand (scaled by capital stock) and the min-max range of demand growth (the uncertainty on the growth rate) are added to equation (1). None of these variable-additions is statistically significant, while the other parameters’ estimates remain virtually
unchanged. The same happens when we replace in definition (2) the min-max range with its square and interact it with the expected demand.

Another possible objection to the specification of equation (1) is that the negative effect of uncertainty on investment arises because it actually proxies for credit constraints: if credit constraints are due to the company’s inherent riskiness, riskier firms may be more liquidity-constrained and, thus, plan less investment. This interpretation is assessed in column (4) by adding the $RAT_{it}$ variable to equation (1). $RAT$ is a dummy equal to one if the $i^{th}$ firm at

\[\text{RAT}_{it} \]

\[\begin{array}{ccccccc}
\text{NXT} & 7642 & 7642 & 7642 & 7547 & 7060 & 7642 \\
\text{N} & 2141 & 2141 & 2141 & 2134 & 2078 & 2141 \\
\text{T} & 3.57 & 3.57 & 3.57 & 3.54 & 3.40 & 3.57 \\
\text{RMSE} & 0.1807 & 0.2128 & 0.1810 & 0.1810 & 0.1797 & - \\
\text{R}^2 & 0.1284 & 0.1309 & 0.1249 & 0.1304 & 0.1319 & 0.0719 \\
\end{array}\]

Notes: (1) Robust standard errors are in brackets. (2) Equation (1) specification if not otherwise indicated. (3) Variability of the real, expected demand growth rate one-year-ahead. (4) Dummy equal to 1 for credit rationed firms, see Appendix A1.3. (5) Cash flow over capital stock, see Appendix A1.3. (6) Calculated as the squared correlation of actual-fitted data.
time $t$ was rationed in the credit market, on the basis of the SIM replies to the questions on credit applications (see Appendix A1.3). In column (5) we follow Fazzari, et al. (1988) by adding, besides the $RAT_i$ indicator, a measure of the firm’s cash flow net of dividend paid, $CF_{it}$, to proxy for liquidity constraints (again, see Appendix A1.3). The estimates of the parameters of these two variables are largely not significant, both individually (t-statistics are smaller than 0.5) and jointly (p-value of the jointly zero parameters hypothesis is 0.842) while the other parameter estimates rarely depart from the corresponding ones in column (1).

In column (6) of Table 3 we estimated equation (1) with GMM-sys (see Blundell and Bond, 1998) in order to assess for the robustness of our OLS-within estimates to possible measurement errors and endogeneity due to dynamics, as discussed above. The GMM-sys estimator is more general than other alternatives (it also allows to instrument explanatory variables’ levels with first differences), and preserves the sample dimension while the alternative approach of Arellano and Bond (1991) based on first differences would have implied a loss of 2920 observations out of 7642. GMM-sys is carried out by using as instruments the uncertainty theoretical determinants (reversibility and market power indicators, see Appendix A1.3), and lags of both effective and expected data of investments and sales. In the light of the Hansen (1982) $J$ test, the 602 over-identification restrictions are not 5% rejected, and the Arellano and Bond (1991) test does not detect any signal of residuals’ autocorrelation. Estimation results in column (6) are in line with our base findings: the effects of interest are significant and the estimation intervals overlap those in column (1). For this reason, in what follows we will only refer to the OLS-within estimates.

Finally, we have substituted the dependent variable, investment plans, with the realised investment reported by the companies (a thorough description of this exercise is in Appendix A2). In this case we expect to obtain estimates of the regressors parameters to be somehow less significant, given that realised investment may have been driven by the occurrence of news that may have changed the initial plans of the firms. This is indeed what we find with the GMM-sys estimator since equation (1) with realised, instead of planned, data is a genuine dynamic panel model. Moreover, when we include in the modified equation (1) the company investment plans, all other parameters lose their significance indicating that investment plans can be considered as a sufficient statistics for realised investment.

Overall, panel estimates seem to qualitatively confirm the cross-sectional results: investment plans are directly linked to expected demand, and the effect of uncertainty appears to be negative and significant even after a series of robustness checks. However, from a
quantitative point of view, some differences appear with reference to the value of the elasticity to expected demand, as also shown by our repeated cross-section estimates.

5. The effect of uncertainty in sub-samples

5.1 Irreversibility and market power

A possible explanation of the results discussed in the previous section comes from the irreversibility theory of investment decisions. In this approach, the negative effects of uncertainty may arise from the difficulty of liquidating installed capital when demand proves to be lower than expected. However, according to Caballero (1991), the presence of irreversibility is not sufficient to render a negative relationship between investment and uncertainty. What is crucial is some degree of imperfect competition. In this paragraph we test both the hypotheses of irreversibility and the degree of competition and a combination of the two. The results seem to confirm Caballero’s suggestion: the negative effect of uncertainty appears to be stronger for irreversible and less competitive firms.

To quantify the influence of irreversibility, we split our full sample in two parts according to a reversibility indicator obtained on the basis of the SIM information about transactions in the secondary market for capital goods, and about leasing investment (see Appendix A1.3 for definitions). Though simple, this indicator captures to a certain degree the reversibility of investment decisions because it takes into account the “putty/putty” feature of the technology used by the firm. In this context, two reversibility indicators may be computed, a “strong” and a “weak” one. The strong indicator is obtained on the basis of single cases (company-year): reversibility occurs when the $i^{th}$ company at time $t$ explicitly uses the opportunity to buy in the second-hand and/or in the leasing markets. In this case a single company in some years may belong to the “high reversibility” group and in others to the “low reversibility” one. The weak indicator is based on all the cases relating to the same company. In particular, a company is classified in the “high reversibility” group if it uses the opportunity to buy in the second-hand and/or in the leasing markets at least twice during the sample period.

Table 4 (columns 2 to 5) shows the results of the estimates of equation (1) by splitting the sample according to the high or low reversibility groups (column 1 replicates the first column of Table 3 to ease comparisons).
<table>
<thead>
<tr>
<th>Regressors</th>
<th>Total sample</th>
<th>Low reversibility</th>
<th>High reversibility</th>
<th>Market power</th>
<th>low reversibility</th>
<th>High reversibility</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All cases</td>
<td>Weak indicator</td>
<td>Strong indicator</td>
<td>With export share &gt;50%</td>
<td>With export share &lt;50%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Low market power</td>
<td></td>
<td>Strong market power</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>With export share</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
<td>(7)</td>
</tr>
<tr>
<td>( \frac{Y_{u+1}}{K_u} )</td>
<td>0.0301</td>
<td>0.0452</td>
<td>0.0573</td>
<td>0.0181</td>
<td>0.0181</td>
<td>0.0226</td>
</tr>
<tr>
<td></td>
<td>(0.0125)</td>
<td>(0.0307)</td>
<td>(0.0284)</td>
<td>(0.0034)</td>
<td>(0.0043)</td>
<td>(0.0060)</td>
</tr>
<tr>
<td>( \frac{u(Y_{u+1})}{K_u} )</td>
<td>-0.0318</td>
<td>-0.0368</td>
<td>-0.0376</td>
<td>-0.0206</td>
<td>-0.0299</td>
<td>-0.0493</td>
</tr>
<tr>
<td></td>
<td>(0.0139)</td>
<td>(0.0143)</td>
<td>(0.0135)</td>
<td>(0.0148)</td>
<td>(0.0149)</td>
<td>(0.0215)</td>
</tr>
<tr>
<td>( \frac{I_u}{K_{u-1}} )</td>
<td>0.0284</td>
<td>0.0615</td>
<td>-0.0003</td>
<td>0.0001</td>
<td>-0.0197</td>
<td>-0.0898</td>
</tr>
<tr>
<td></td>
<td>(0.0513)</td>
<td>(0.1139)</td>
<td>(0.1241)</td>
<td>(0.0390)</td>
<td>(0.0584)</td>
<td>(0.0911)</td>
</tr>
<tr>
<td>N×T</td>
<td>7 642</td>
<td>2 353</td>
<td>2 525</td>
<td>5 289</td>
<td>5 117</td>
<td>3 549</td>
</tr>
<tr>
<td>N</td>
<td>2 141</td>
<td>1 000</td>
<td>1 264</td>
<td>1 141</td>
<td>1 730</td>
<td>1 322</td>
</tr>
<tr>
<td>( \bar{T} )</td>
<td>3.57</td>
<td>2.35</td>
<td>2.00</td>
<td>4.64</td>
<td>2.96</td>
<td>2.68</td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1807</td>
<td>0.2443</td>
<td>0.1871</td>
<td>0.1401</td>
<td>0.1310</td>
<td>0.1396</td>
</tr>
<tr>
<td>( R^2 )</td>
<td>0.1284</td>
<td>0.1827</td>
<td>0.2264</td>
<td>0.1013</td>
<td>0.1101</td>
<td>0.1128</td>
</tr>
</tbody>
</table>

**Elasticity of planned investments to expected demand**

(evaluation at median uncertainty)

| Median (Q2) | \( 1.062 \) | \( 1.594 \) | \( 2.023 \) | \( 0.640 \) | \( 0.640 \) | \( 0.794 \) | \( 1.134 \) | \( 0.845 \) | \( 1.497 \) | \( 3.147 \) | \( 0.554 \) | \( 0.423 \) | \( 0.784 \) |
|            | (0.444)     | (1.087)          | (1.001)           | (0.120)       | (0.152)       | (0.212)       | (0.370)       | (0.360)       | (0.908)       | (1.845)       | (0.231)       | (0.219)       | (0.172)       |

% Change of investments from Q3 to Q1

(evaluation at median demand)

| from Q3 to Q1 | \( 1.300 \) | \( 2.262 \) | \( 2.932 \) | \( 0.508 \) | \( 0.738 \) | \( 1.515 \) | \( 1.112 \) | \( 3.898 \) | \( 0.905 \) | \( 2.172 \) | \( 0.653 \) | \( 0.936 \) | \( 0.510 \) |
|              | (0.677)     | (1.560)          | (1.766)           | (0.393)       | (0.421)       | (0.640)       | (0.362)       | (2.138)       | (0.855)       | (2.968)       | (0.298)       | (0.395)       | (0.391)       |

(1) Robust standard errors in brackets.
As expected, the estimates of the uncertainty parameter are lower (in absolute value) and not significant for the sub-sample characterised by a high degree of reversibility. *Vice versa*, in the sub-sample of the companies with a low degree of reversibility, the estimates of the uncertainty parameter are higher in absolute value and largely significant. In this case the uncertainty effect on investment plans is almost four times as higher as that for the companies with a higher degree of reversibility.

The characteristics of the product market may be analyzed through the degree of market power of a company. This can be measured on the basis of the deviations of the company’s price-cost margin with respect the median of the industrial sector to which it belongs (results do not change if the mean is used). The price-cost margin is computed according to Domowitz *et al.* (1986; see Appendix A1.3 for more details). With this indicator we can classify the companies in our sample into two sub-samples according to the “low” or “high” degree of their market power.

In Table 4 (columns 6 to 11) we report the estimates of equation (1) for the sub-samples related to the market power. As expected, the uncertainty effect is stronger for firms operating in markets characterised by a low degree of competition: in column (6) the effect of \( \frac{u(Y_{t+1})}{K_t} \) is significant and stronger than that of the total sample, while for the companies belonging to the low market power group, it is very low and not significant (column 9). Again, as in the irreversibility case, the prediction of the theory appears to be confirmed.

As the price-cost margin is only a proxy of the real market power of a company or of the degree of competition in the product market\(^{11}\), we consider a further specification linked to the presence of the Italian firms on the foreign markets. On one hand it is possible that companies which sell a significant share of their products abroad have been likely to face a tougher competition in the last ten years. The adoption of the Euro put an end to the practice of “competitive devaluations” of the Lira and the contemporaneous development of new industrialized countries have particularly hit the so called “made in Italy” products. On the other hand, this does not mean that firms more domestically oriented have not experienced an increase in competition. Moreover, it has been argued that many export-oriented firms have

\(^{11}\) See Martin (1984) for a discussion of the problems in using the price-cost margins as indicator of market power. However, similar results about the effects of competition on the investment-uncertainty relationship have been found in Bulan (2005), where the degree of competition is proxied by the concentration index and in Bulan *et al.* (2006), which use as a proxy for market power the number of competitors of the firm. By measuring competition with the degree of seller concentration, Ghosal and Loungani (1996) find the opposite result (i.e. that the effect of uncertainty is more negative in more competitive industries).
been able to exploit specific “niches” of the markets, where the high specialization of their products may isolate them from competitive pressures (see De Nardis and Traù, 2005).

These two competing interpretations can be empirically evaluated by considering explicitly the export propensity of the firms in our data set. More specifically, we construct two more sub-samples for both the “high” and the “low” market power cases according to the export shares of the companies being greater or lower than 50 per cent (we have also tried with different share intervals with no substantial difference).

The results in Table 4 show that for the companies of the high market power group which sell more on the domestic market the coefficient estimate of uncertainty in column (8) doubles, implying an even greater market power. On the contrary, for the companies with an export share greater than 50 per cent the uncertainty effect in column (7), though significant, appears to be weaker than in the total sample estimates. By considering the firms with an export share below 50 per cent in the low market power group, the estimated coefficient of uncertainty in column (11) is significant and close to the one estimated for the total sample.

The final step of this paragraph is to combine the irreversibility and the “high” market power groups. In the case of reversibility, we have chosen to concentrate only on the classification based on the “weak” indicator. This indicator appears to be more robust than the “strong” one, as it is based on the behaviour of firms over the whole time period and not only on single events.

Columns (12) and (13) of Table 4 report the estimates for the sub-sample of the companies classified both as “high market power” and “low reversibility”, and the sub-sample of the companies classified both as “low market power” and “high reversibility”, respectively. Confirming our a priori, the uncertainty parameter estimates appear to be higher in absolute value in the group where firms use more irreversible capital goods and are more likely to face less competition, while it is almost negligible in the other group. The effect on investment plans is almost twice as stronger as that of the firms in the second group.

5.2 Labour flexibility

The theoretical literature on the investment-uncertainty relationship has generally ignored the characteristics of the labour input in the investment decision process. In most analyses the labour input is optimized out under the assumption of costless adjustment. Only Lee and Shin (2000) take explicitly into account the role of this production factor in the investment decision. Their results show that more can be understood about the investment-uncertainty relationship by explicitly considering the flexibility of the labour input. In
particular, the uncertainty effect should be weaker (stronger) for companies with a higher (lower) labour share. This implication of Lee and Shin’s analysis can be empirically tested in the context of our analysis. The data set of the SIM contains useful information on several features of the labour input used by the companies in the sample, such as the amount of hired and fired workers over the year, the total number of hours worked, of overtime hours and of hours in the wage supplementation fund (CIG, from “Cassa Integrazione e Guadagni”).

Table 5

<table>
<thead>
<tr>
<th>PLANNED INVESTMENTS, UNCERTAINITY AND LABOUR FLEXIBILITY ¹</th>
<th>Total sample 1996-2004</th>
<th>Turnover</th>
<th>Sub-sample 1998-2004</th>
<th>Overtime - CIG</th>
<th>Low turnover and overtime-CIG</th>
<th>High turnover and overtime-CIG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regressors</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
<td>(4)</td>
<td>(5)</td>
<td>(6)</td>
</tr>
<tr>
<td></td>
<td>(7)</td>
<td>(8)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( Y_{it+1} )</td>
<td>0.0301</td>
<td>0.0188</td>
<td>0.0445</td>
<td>0.0333</td>
<td>0.0126</td>
<td>0.1031</td>
</tr>
<tr>
<td>( K_{it} )</td>
<td>(0.0125)</td>
<td>(0.0076)</td>
<td>(0.0251)</td>
<td>(0.0162)</td>
<td>(0.0056)</td>
<td>(0.0438)</td>
</tr>
<tr>
<td></td>
<td>(0.0111)</td>
<td>(0.0618)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( u(Y_{it+1}) )</td>
<td>-0.0318</td>
<td>-0.0673</td>
<td>-0.0151</td>
<td>-0.0313</td>
<td>-0.0690</td>
<td>-0.0173</td>
</tr>
<tr>
<td>( K_{it} )</td>
<td>(0.0139)</td>
<td>(0.0241)</td>
<td>(0.0105)</td>
<td>(0.0149)</td>
<td>(0.023)</td>
<td>(0.0111)</td>
</tr>
<tr>
<td></td>
<td>(0.0376)</td>
<td>(0.0158)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( J_{it} )</td>
<td>0.0284</td>
<td>0.0199</td>
<td>0.1087</td>
<td>-0.0137</td>
<td>0.0653</td>
<td>-0.0327</td>
</tr>
<tr>
<td>( K_{it-1} )</td>
<td>(0.0513)</td>
<td>(0.0426)</td>
<td>(0.0486)</td>
<td>(0.0633)</td>
<td>(0.0631)</td>
<td>(0.0843)</td>
</tr>
<tr>
<td></td>
<td>(0.1081)</td>
<td>(0.1680)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>( N \times T )</td>
<td>7642</td>
<td>3867</td>
<td>3775</td>
<td>6365</td>
<td>3414</td>
<td>2951</td>
</tr>
<tr>
<td>( N )</td>
<td>2141</td>
<td>1477</td>
<td>1560</td>
<td>2008</td>
<td>1397</td>
<td>1278</td>
</tr>
<tr>
<td>( \overline{T} )</td>
<td>3.57</td>
<td>2.62</td>
<td>2.42</td>
<td>3.17</td>
<td>2.44</td>
<td>2.31</td>
</tr>
<tr>
<td>( \text{RMSE} )</td>
<td>0.1807</td>
<td>0.1300</td>
<td>0.1912</td>
<td>0.1846</td>
<td>0.1275</td>
<td>0.1911</td>
</tr>
<tr>
<td>( \text{R}^2 )</td>
<td>0.1284</td>
<td>0.1089</td>
<td>0.1933</td>
<td>0.1388</td>
<td>0.1101</td>
<td>0.3802</td>
</tr>
</tbody>
</table>

**ELASTICITY OF PLANNED INVESTMENTS TO EXPECTED DEMAND**

(evaluated at median uncertainty)

| Median (Q2) | 1.062 (0.444) | 0.660 (0.268) | 1.578 (0.893) | 1.179 (0.574) | 0.442 (0.198) | 3.657 (1.554) | 0.522 (0.390) | 4.980 (2.189) |

**% CHANGE OF INVESTMENTS FROM TO A REDUCTION IN UNCERTAINTY**

(evaluated at median demand)

| from Q3 to Q1 | 1.300 (0.678) | 1.726 (0.895) | 0.917 (0.742) | 1.422 (0.793) | 1.186 (0.631) | 2.431 (1.790) | 1.763 (1.222) | 3.370 (3.513) |

(¹) Robust standard errors in brackets.

On the basis of this information we can compute two indicators of labour flexibility. The first is a measure of workers’ turnover (WT), defined as the sum of the number of hired and fired employees divided by the stock of total employment in the year. The second measure (WH) is obtained by summing the total number of overtime and CIG hours divided by the total number of hours worked. In this case, as the data about overtime hours have been
collected since 1998, all the regressions involving WH concern only the 1998-2004 sub-sample period (further details are in Appendix A1.3). Similarly to the irreversibility and market power exercises, the \( i \)th firm is classified as belonging to the high (low) labour flexibility group if \( W_{Ti} \) or \( WH_i \) is larger (lower) than the corresponding median values in \( t \) of the sector to which the firm belongs.

Table 5 reports the estimates of equation (1) for the full sample and the 1998-2004 sub-period respectively. The results seem to confirm Lee and Shin (2000) analysis: investment plans of firms with high labour flexibility (columns 3 and 6) are considerably less influenced by uncertainty about future demand. The reverse is true for firms with low labour flexibility (columns 2 and 5): in this case the elasticity of investment plans with respect to expected demand is less than half than that for firms with high labour flexibility.

![Table 6](image-url)

*Robust standard errors in brackets.*
The two indicators we have computed may be interpreted as a proxy of two different forms of flexibility, related to the possibility of changing the number of employees (WT) or the number of hours worked according to the needs of production (WH). It may therefore be useful to consider a third case, where the high (low) flexibility group is defined according to both indicators simultaneously. The results of this splitting (columns 7 and 8) show that for the companies characterised by a very flexible labour input the effect of uncertainty continues to be non-significant, while it attains its maximum (negative) value in the opposite case. A final step of this analysis is to check the results for the group of companies selected according to their labour flexibility and degree of market power. The estimates of our specification in these different cases are shown in Table 6. The general impression is that the market power characteristic tends to dominate that of labour flexibility. This is fairly clear in columns (3) and (7), where the explicit consideration of market power completely offset the results obtained previously for the labour flexibility; in the remaining two cases (columns 4 and 6) the estimates confirm and reinforce those already obtained when only market power was used (see Table 4, columns 6 and 9). This set of results seems to suggest that the information content of our measures of labour flexibility is somehow accounted for by the more general degree of market power. More evidence on this point will be provided in the next Section.

6. The effect of uncertainty over time

The time dimension of our dataset allows to conduct a more detailed analysis of the investment-uncertainty relationship over time. The evidence provided by the repeated cross-section estimates in Section 3 (especially the evolution of the estimated coefficient of uncertainty in Figure 1) may be interpreted as a signal of some form of instability affecting our panel results. Technically, this implies the presence of a break in the parameter estimates of equation (1).

As the exact timing of the break is not known, we test for $\alpha_1, \alpha_2, \alpha_3$ parameters stability by computing repeated Chow tests within the 1999-2003 period. More specifically, five regressions of equation (1) are computed where we add interaction terms between the three regressors - i.e. expected demand, uncertainty and lagged realised investments - and step dummies $D_\tau$ (equal to zero before $\tau$, 1 Afterwards, with $\tau$ ranging from 1999 to 2003). These interaction effects are associated to the $\alpha_1', \alpha_2', \alpha_3'$ parameter estimates reported in Table 7.
The outcomes of the parameter constancy tests (Table 7, last three rows) seem to suggest the absence of any break. This is supportive of our panel results and leads to explain the temporal evolution of the parameter estimates in repeated cross-sections on the basis of some unobservable factors and shocks. Our findings however cannot exclude the instability of one of the coefficients of equation (1). In particular, the $\alpha_2$ parameter shows systematic signs of variability over time confirming the cross-section evidence of Section 3.

---

12 A candidate for a break point could be the year 2002, which is associated with the highest F statistic; however, the estimates of the $\alpha$, $\alpha'$ and $\alpha_2$ parameters appears to be jointly stable, as shown by the values of the sup-Wald statistic (2.11 against a 10% critical value of about 4 computed by Andrews, 1993).

13 Though in a different context and with more aggregate data, Caselli et al. (2003) find an instability of the demand effect on investment that disappears once uncertainty is included in the investment equation.
To investigate the issue further, we specified an equation where the $\alpha_2$ parameter is allowed to vary over time in a deterministic way. More specifically, we substitute the $\alpha_2$ parameter in equation (1) with nine interaction terms between uncertainty and time dummies (with $\alpha_{2t}$ parameters). The time path of the $\alpha_{2t}$ estimates and of their standard errors is depicted in Figure 2, together with their average $\hat{\bar{\alpha}}_2 = \frac{\sum_t \hat{\alpha}_{2t}}{9}$.

**Fig. 2**

**TIME VARYING ESTIMATES OF THE UNCERTAINTY PARAMETER**

<table>
<thead>
<tr>
<th>Year</th>
<th>$\hat{\alpha}_{2t}$</th>
<th>Confidence Interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>95</td>
<td>-0.15</td>
<td></td>
</tr>
<tr>
<td>96</td>
<td>-0.10</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>-0.05</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>0.00</td>
<td></td>
</tr>
<tr>
<td>99</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>00</td>
<td>0.10</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>02</td>
<td>0.20</td>
<td></td>
</tr>
<tr>
<td>03</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>05</td>
<td>0.35</td>
<td></td>
</tr>
</tbody>
</table>

(\textsuperscript{1}) The thick solid line reports the estimates of $\alpha_{2t}$ parameters (the two thin solid lines delimit the corresponding 95% confidence interval). The thin dotted horizontal line corresponds to the mean of the nine $\alpha_{2t}$ estimates (the shaded area delimit the 95% confidence interval).

In statistical terms, the differences among the $\alpha_{2t}$ parameters are not significant: the null hypothesis that $\alpha_{2t} = \alpha_2 \ \forall \ t$ is not rejected with a p-value of 0.38, and the two 95% confidence intervals in Figure 2 (\textit{i.e.} of $\alpha_2$ and of $\hat{\bar{\alpha}}_2$) largely overlap. Moreover, the average estimate $\hat{\bar{\alpha}}_2 = -0.0307$ is very close to the panel estimate of equation (1), $\hat{\alpha}_2 = -0.0318$ (see Table 4). However, even the evidence in Figure 2 seems to suggest a gradual weakening of the influence of uncertainty on investment plans.\textsuperscript{14}

The explanation of such an evolution requires a deeper analysis of the structural features of the uncertainty-investment relationship. In this paper we have investigated some of

\textsuperscript{14} The estimates in Table 7 might also suggest a shift in the $\alpha_2$ parameter. In order to prevent such shift to spread into the $\alpha_{2t}$ estimates, we performed the same exercise as for Figure 2, but with a 2001 break in the $\alpha_i$ parameter. Results (not reported) about the $\alpha_{2t}$ estimates remain broadly unchanged. Finally, if we allow for a break in both the $\alpha_i$ and $\alpha_0$ parameters, the joint restriction to zero of the corresponding $\alpha_{i1}$ and $\alpha_{i3}$ parameters in a model with time varying $\alpha_0$ is not rejected (p-value = 0.11).
characteristics suggested by the literature, such as risk aversion, liquidity constraints, irreversibility, labour flexibility and the degree of market power.

Risk aversion is an unobservable variable that our panel approach, with individual and time effects, can properly account for in estimating the $\alpha$ parameters (while the cross-section approach can only do so to a very limited extent). However, it cannot be disentangled from other unobservable effects.

For the other three determinants, some proxies are available and their correlation over time with the evolution of the uncertainty effect presented in Figure 2 can be analyzed. While for liquidity constraints we have shown their irrelevance in Section 4, for the other two determinants a dynamic pattern cannot be excluded \textit{a priori}.

In the case of reversibility, the technical progress may have had some effects on the characteristics of the capital goods limiting their irreversibility once installed. Since suitable variables do not exist, we have employed some proxy based on the share of companies that have used second hand and/or leasing markets for their capital goods. In this case if irreversibility had decreased over time the share of “reversible” firms should have increased. This does not seem to be the case in our sample; actually, we observe the opposite effect: a drop of the share of reversible firms which should have reinforced the negative effect of uncertainty.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{price_cost_margins.png}
\caption{Price-cost margins over time\textsuperscript{1}}
\end{figure}

\textsuperscript{1} Measures of centre and dispersion of the price-cost margin sample distribution.
Details about price-cost margin computation are given in the Appendix A1.3.

For labour flexibility, the results in paragraph 4.2.1 show that their effect may be somehow obscured by that of that of the degree of market power which shows a dynamic
pattern consistent with that of the uncertainty effect (Fig. 3). We have therefore chosen, at least initially, to concentrate only on the degree of market power.

In analogy with Domowitz et al. (1986), we address the influence of changes in price-cost margins on investment plans through the main explanatory variables of equation (1) by adding the respective interactions with alternative measures of price-cost margins, $X_{it}$. In this way the coefficients of the main explanatory variables are allowed to vary over time as a linear function of the market power: $\alpha_{J, it} = \alpha_J + \beta_J X_{it}$, (for $J = 1, \ldots, 3$), where the $\beta_J$ parameters measure the influence of the market power proxy $X_{it}$ on the effect on planned investments of, respectively, expected demand, uncertainty and lagged realised investments.

By inserting these interactions into equation (1) we have:

$$\frac{t I_{it+1}}{K_{it}} = \alpha_i + \lambda_i + \alpha_1 \frac{Y_{it+1}}{K_{it}} \left[ 1 + \beta_1 X_{it} + \left( \alpha_2 + \beta_2 X_{it} \right) \frac{Y_{it+1}}{K_{it}} \right]$$

$$+ \left( \alpha_3 + \beta_3 X_{it} \right) \frac{I_{it}}{K_{it-1}} + \alpha_4 Z_{it} + e_{it+1}$$

Equation (1) is a valid reduction of (3) when the three restrictions: $\beta_1 = \beta_2 = \beta_3 = 0$ jointly hold. However, the validity of our conjecture that the uncertainty effect evolution is driven by the dynamics of the price-cost margin implies that in equation (3) $\beta_2 < 0$ and $\beta_1 = \beta_3 = 0$.

In Table 8 we report only the estimates of equation (3) based on the level of price-cost margins ($PCM_{it}$; in another set of regressions we have also used the deviation of $PCM_{it}$ from its sectoral median/mean at time $t$ and that from the overall sectoral median/mean with no significant change to the estimates). The most interesting finding (see column 1) is that the $\beta_2$ estimates are negative and significant; moreover, the joint parameters restrictions are consistent with the absence of a structural break in the basic equation and with our assumption that the degree of market power affects investments only through uncertainty, in line with the variability over time of the $\alpha_2t$ parameter.

In the previous sections we have shown that the proxy of the degree of market power may be better measured by considering some features of the companies markets and technology, such as the effect of competition from foreign firms, both on internal and international markets, and the role played by the characteristics of the labour input. In this
In this context we have considered two variables: the labour flexibility indicator based on the turnover index ($WT_{it}$, computed in paragraph 5.2); and an indicator of the foreign openness of the sector to which the individual company belongs ($OP_{st}$), defined as the sum of imports and exports over the value added at factor costs (see Appendix A1.3 for details). The parameter $\gamma_2$ measures the interaction between uncertainty and $OP$ or $WT$, similarly to what $\beta_2$ does regarding the interaction between uncertainty and $PCM$. The corresponding estimation results are reported in columns (3) and (4) of Table 8.

<table>
<thead>
<tr>
<th>Parameters:</th>
<th>$X_{it} =$</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\alpha_1$</td>
<td>0.0302</td>
<td>0.0305</td>
<td>0.0300</td>
<td>0.0305</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0137)</td>
<td>(0.0137)</td>
<td>(0.0132)</td>
<td>(0.0136)</td>
<td></td>
</tr>
<tr>
<td>$\alpha_2$</td>
<td>0.0081</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0133)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\alpha_3$</td>
<td>0.0031</td>
<td>0.0091</td>
<td>0.0098</td>
<td>0.0087</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.0621)</td>
<td>(0.0537)</td>
<td>(0.0533)</td>
<td>(0.0535)</td>
<td></td>
</tr>
<tr>
<td>$\beta_1$</td>
<td>0.0476</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1630)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\beta_2$</td>
<td>-0.3980</td>
<td>-0.3037</td>
<td>-0.5088</td>
<td>-0.4504</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1819)</td>
<td>(0.1109)</td>
<td>(0.2059)</td>
<td>(0.1825)</td>
<td></td>
</tr>
<tr>
<td>$\beta_3$</td>
<td>0.0887</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.1758)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\gamma_2$</td>
<td></td>
<td>0.0175</td>
<td>0.0259</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>(0.0138)</td>
<td>(0.0248)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMSE</td>
<td>0.1789</td>
<td>0.1790</td>
<td>0.1787</td>
<td>0.1788</td>
<td></td>
</tr>
<tr>
<td>R²</td>
<td>0.1359</td>
<td>0.1349</td>
<td>0.1382</td>
<td>0.1371</td>
<td></td>
</tr>
</tbody>
</table>

$\beta_1 = \beta_3 = 0$  
$\beta_1 = \beta_2 = \beta_3 = 0$  
$\beta_1 = \alpha_2 = \beta_3 = 0$  
$\beta_1 = \alpha_2 = \beta_2 = \gamma = \gamma_2 = 0$  
$\beta_1 = \alpha_2 = \beta_2 = \gamma = \gamma_3 = 0$  

(1) Robust standard errors are in brackets. Sample dimensions: N×T=7104 and N=2080; the merge of the SIM and the CADS databases entails the loss of about 7 per cent of observations and of 2.8 per cent of companies. (2) Obtained by simplifying the column (1) specification. (3) See equation (3) for parameters’ definition; $\gamma_j$ parameters ($j = 1, 2, 3$) have the same meaning as the $\beta_j$ parameters. (4) P-values of the F-statistics.
In general, these extensions do not appear to be significant (see the standard error of the $\gamma_2$ estimates). In the case of the WT indicator this result may be interpreted as a confirmation of the previous finding about the dominance of the PCM (see Section 5.2).

Fig. 4

THE RELATIONSHIP BETWEEN UNCERTAINTY EFFECTS
PRICE-COST MARGINS, OPENNESS AND TURNOVER

1 The two left-side panels show the relationship between the uncertainty effect and PCM (the horizontal line corresponds to the panel estimate, the vertical one to the sample PCM average). The right-side panels shows the corresponding time paths of the uncertainty effect measured by the average of the estimates (the three horizontal lines correspond to the panel estimate, equal to -0.032, and its 66% confidence interval).

In the case of the OP indicator, its still low significance is likely to be due to its reduced variability as it is measured at the sector level. However, in both cases the estimates of the coefficient of PCM are highly significant. Figure 4 shows the estimated relationships $\alpha_{2.it} = \beta_{2}PCM_{it} + \gamma_{2}WT_{it}$ and $\alpha_{2.it} = \beta_{2}PCM_{it} + \gamma_{2}OP_{it}$ (left-side panels) for each individual company. In particular, when either OP (left-high panel) or WT (left-low panel) increase $\alpha_{2.it}$ moves to high-rightward implying a weakening of the uncertainty effect.

Overall, the evidence in Figure 4 is closely in line with the weakening of the uncertainty effect on investment plans described above (see Figures 1 and 2). These results are consistent with an explanation of the progressive weakening of the uncertainty effect based on the reduction of the price to cost margins along with an increase in labour turnover and in the competitive pressures from foreign companies.
The link between the uncertainty effect on investment plans and the price-cost margin could be interpreted in a strictly cyclical context. According to Domowitz et al. (1986) the evolution of the price-cost margins appears to be pro-cyclical, driven by demand: during expansionary phases the price-cost margin is higher than in recessionary periods. In the light of our results this implies that the uncertainty effect on investment should be counter-cyclical. As this effect is inversely proportional to price-cost margins, during an expansion the presence of uncertainty acts as a brake on the propensity to invest. *Vice versa*, in recessions the negative effect of uncertainty weakens considerably. This is an interesting result, which has never been analyzed before. But is it the whole story?

A stream of the theoretical literature on the investment-uncertainty relationship emphasizes the role of the irreversibility of the capital goods along with some assumptions about the product markets and the technology of the firm. Another stream of the literature puts the emphasis also on the other production input, labour: when a firm operates in perfect competition and the labour input is variable, the uncertainty effect may become non-negative. This implies that besides cyclical factors there might be a more structural explanation behind the evolution of the uncertainty effect.

Thanks to the availability of a panel of data on a fairly long time period, covering a complete business cycle, we have shown that the uncertainty effect on investment plans of a sample of Italian manufacturing firms evolves over time, gradually weakening. We have been able to show that this time path may be influenced by the corresponding evolution of the firm price-cost margins, which have been decreasing fairly smoothly over the period. If the price-cost margin may be considered as a proxy variable of the degree of market power, our results could be interpreted as supporting the hypothesis that for companies with low market power the uncertainty effect is lower. More generally, this may imply that in a more competitive environment the inherent volatility of investment may be lower because of the less relevant uncertainty role.

As our paper has shown, this seems to fit fairly well with the Italian case, where it appears that the increased degree of competition, especially from foreign firms both on internal and on international markets, may have positively influenced the investment policy of industrial firms.

Over the period under examination international markets have been characterised by a rise in competition fostered by the fall in transports and communication costs as well as the
reduction of trade barriers. New players have appeared on the economic scene raising the competition pressure on the production of the traditional industrial countries. The Italian manufacturing sector, specialized in low-technology products, has been particularly hit by these global trends. At the same time, the Italian firms have experienced another profound change: the adoption of the Euro, the European common currency, that prevented the possibility of devaluing the Lira to regain some competitive power (the so-called “competitive devaluations” so frequent in the past economic history of the Italian economy).\textsuperscript{15} There is some evidence that a large share of Italian firms, also exploiting the technological advantages of being part of an industrial district, have reacted by adopting strategies of innovation and internationalization and/or developing high-quality (and often unique) products in order to counterbalance the competitive pressure of low price products (Coltorti, 2006; De Novellis \textit{et al}, 2006).

Along with these external factors, there have been also some important economic policy decisions aimed at reforming the labour market to achieve a higher degree of flexibility.

Although we cannot identify a specific general reform, there has nonetheless been a process of slow but constant change aimed at reducing the degree of rigidity in the use of the labour input. Thanks to the availability of a rich data set, we have been able to show that uncertainty about expected demand has a weaker effect on investment decisions for firms employing a more flexible labour input (in terms of both employees and working hours). This result casts a new light on the issue of labour flexibility implications. The recent literature (see Brandolini \textit{et al.}, 2006) has shown that a higher degree of flexibility may have negative effects on the productivity of a firm as the reduction of hiring and firing costs raise the convenience to employ “less efficient” workers. However, our findings suggest that efficiency might also be improved \textit{via} the positive relationship between the degree of labour flexibility and the elasticity of investment with respect to demand.

In general both at the international and at the internal level we can identify a common evolution towards an economic environment closer to that underlying the Hartman-Abel approach, where the interplay of a higher degree of competition, a more flexible labour

\textsuperscript{15} It could be argued that there had been other periods when the Lira joined a sort of monetary system. This however cannot be compared with the adoption of the Euro. While in the past everyone knew that the Lira could at any moment abandon the monetary system without many damages, with the Euro this appears to be quite impossible. We may say that in the actual situation there is a sort of psychological factor at work: the awareness that the Euro is “irreversible”. 
market and the production technology of the firms may imply a weaker effect of uncertainty on investment decisions.

This conclusion, as the whole set of results presented in this paper, should be however considered as tentative. Further research is necessary to investigate the relationship among investment, uncertainty and the demand. Another issue we have only marginally tackled is that of the proper dependent variable to use. Almost all the empirical works so far have been based on realised investment, but most of the theory has to do with desired or expected investment (our “investment plans”). Our efforts (see Butzen et al., 2003, for a similar application to the Belgian manufacturing firms) have shown that much can be gained by exploiting self-reported data when no other reliable information is available.
Appendix A1: Data sources and definitions of variables

A1.1 – Effective and planned investments

From the SIM source, both effective and planned investments at current prices are available, disaggregated in three types of goods: structures, machinery, and equipment; vehicles; nonresidential buildings. For the $i^{th}$ company ($i = 1, 2, \ldots, N, N = 4860$) at year $t$ ($t = 1, 2, \ldots, T, T = 9$, from 1996 to 2004), we indicate with $INV^j$ and $INV^{j\prime}$ the level of effective investment realised in $t$, and of the investment planned in $t$ for $t+1$, respectively; the superscript $j$ ($= m$ or $f$) indicates the type of good. In this paper we choose to analyse the behaviour of investment in structures, machinery, equipment and vehicles ($j = m$), compared to that of buildings ($j = f$).\(^{16}\)

The corresponding data at constant (1995) prices are obtained in the following way.

$INV^j$ are deflated by using the corresponding NA sectoral investment prices $PI^j$ for all the companies belonging to $s^{th}$ industry:

$$I^j = \frac{INV^j}{PI^j}.\(^{17}\)$$

The investment price for $t+1$ as perceived in $t$ and used to deflate $INV^{j\prime}$ is defined as: $PI^{j\prime}_{tt+1} = (1+ \pi^j_{tt+1})PI^j_{tt}$, where $\pi^j_{tt+1}$ is the expected inflation of the $j$-type investment price (estimated from the SIM source)\(^{18}\), and $PI^j_{tt}$ are the sectoral NA data defined above.

Therefore, we obtain constant-prices planned investment as $I^{j\prime}_{tt+1} = \frac{INV^{j\prime}_{tt+1}}{PI^{j\prime}_{tt+1}}$.

A1.2 – Stock of capital

The data on capital stocks, at constant prices, are constructed, for both $j = m$ and $f$, according to the formula:

$$K^j = (1 - \delta^j)K^j_{t-1} + I^j \quad (A1.1)$$

where $I$ and $\delta$ are the effective investment at constant prices, and the depreciation rate. By type of good investments, $I^j$, are those obtained in previous Section A1.1. The time series of depreciation rates $\delta^j$ by type of good $j$ is derived from the NA, by assuming that $\delta^j = \delta^j$ for all companies belonging to $s^{th}$ industry.

---

\(^{16}\) SIM database reports, for each year in the sample, both preliminary and final investment figures. Given that the paper focuses on the explanation of planned investments for $t+1$, we prefer to use preliminary data because they are the only investment figures available in $t$, i.e. at the time new investments are planned. From statistical analyses, it turns out that preliminary and final data coincide for the large majority of cases (the 85% for $m$ goods and the 91% for $f$ goods).

\(^{17}\) Manufacturing activity is disaggregated into the 13 sectors listed e.g. in the first column of Table A1.1.

\(^{18}\) From SIM, only the total-investment expected inflation, $\pi^j_{tt+1}$, is available. Data for $\pi^j_{tt+1}$ are estimated by exploiting the sectoral NA inflation differential of $j$-type investment with respect to the total $m+f$, i.e.: $\pi^j_{tt+1} = \pi^j_{tt+1} + (\pi^j_{tt+1} - \pi^j_{tt+1})$, where $\pi^j_{tt+1} = \frac{PI^j_{tt+1} - PI^j_{tt}}{PI^j_{tt}}$ is the $j$-type investment price inflation rate, and the total investment price inflation is defined as $\pi^j_{tt} = \frac{PI^j_{tt+1} - PI^j_{tt}}{PI^j_{tt}}$. 
In order to obtain the initial values of the capital stocks, we exploit the “accounting” initial values $K_{0j}$ obtained from CADS nominal book values, deflated with the same sectoral investment deflators employed for $INV_{jt}$. In particular, we used CADS balance sheet item 44 (land and non-residential buildings) plus item 45 (other buildings) to proxy for $f$ capital stock, and item 48 (structures and machinery) plus item 51 (industrial and commercial equipments) to proxy for $m$ capital stock. The main advantage of this approach is that of exploiting the information at the firm-level: stocks directly refer to each firm, provided that its balance sheet is available in CADS. However, unavoidable drawbacks are the loss of observations induced by merging SIM and CADS data (1308 firms in the $m$ case; and 1444 in the $f$ case), and the impact on the results of formula (A1.1) of the accounting rules (such as re- and de-valuations).

A1.3 – Dummy and other control variables

In the model estimation phase, a number of additional variables can be used either to take into account for a number of company-specific characteristics, or to split the whole sample in sub-samples of interest. The additional variables can be classified in dummy and other control variables.

We defined dummy variables for: industry; location; type of ownership; size; share of exported production; time; extraordinary operations; zeros in effective investment and expected sales; credit rationing; reversibility. Note that: industry, location, type of ownership, size, share of exported production are time invariant (i.e. cannot be used in fixed-effects panel models); time dummies are invariant across individuals; extraordinary operations, zeros in explanatory variables, credit rationing, and reversibility dummies vary over time and across individuals.

Industry. The manufacturing activity is disaggregated into 13 branches (the list is e.g. in the first column of Table A1.1); for each branch we define a dummy variable.

Location. There are four dummies: North-West, North-East, Centre and South-Islands.

Type of ownership. The ownership is classified by two dummies: public (equal to 1 if the ownership is public, zero if it is private); and spa (equal to 1 for limited companies, zero for other types of joint-stock companies).

Size. The number of employees measures the company size. This characteristic is time invariant because, at a first stage, we measure the per-firm temporal average employment, $L_i$, then we classified each company in one of the following five classes: very small ($L_i < 50$), small ($50 \leq L_i < 100$), medium ($100 \leq L_i < 200$), large ($200 \leq L_i < 500$), very large($L_i \geq 500$).

Share of exported production. As for size, the average share of exported production by firm over time, $X_i$, classifies companies in the following five categories: no exporters ($X_i = 0$), moderate exporters ($0 < X_i \leq 25\%$), medium exporters ($25\% < X_i \leq 50\%$), large exporters ($50\% < X_i \leq 75\%$), prevalently exporters ($X_i > 75\%$).

Time. Time dummies classify observations along time: $\lambda_t = 1$ if the observation refers to time $t$, zero otherwise. Therefore, $\lambda_t$ dummies can be estimated in panel models but not in cross-sections, and their presence allows for a degree of dependency across companies in the panel due to collectively significant effects.

\[19\] In doing so, we did not adjust book values to take into account changes in the value of capital goods purchased in the past. For alternative approaches, see the data appendixes of Chirinko and Schaller (2004), and of Chatelain and Teurlai (2001).
**Extraordinary operations.** Three dummy variables equal to 1 if the company has been subject in \( t \) to: de-merger, business combination, and merger.

**Zeros in the model’s explanatory variables.** Two dummy variables, equal to 1 when expected demand and effective lagged investment are respectively zero. Note that zeros in the min-max range of growth in expected demand are not marked with a dummy (as we did for demand and investment), because we interpret such result as “absence of uncertainty”.

**Credit rationing indicator.** It is equal to 1 if the firm is credit-constrained. It is constructed using the answers to three questions on access to credit provided by the firms in the SIM sample. Specifically, firms are asked whether (i) at the current market interest rate they wish a larger amount of credit; (ii) they would be willing accept a small increase in the interest rate charged in order to obtain more credit; (iii) they have applied for credit but have been turned down. A company is classified as credit-constrained if, given a positive answer to either question (i) or (ii), it also answered “yes” to question (iii).

**Reversibility indicator.** The reversibility of the installed capital goods may be represented by an indicator based on transactions in the secondary market and on leased investment (revst). It is a dummy variable equal to one if in \( t \) the \( i^{th} \) firm purchased or sold investment goods in the second-hand market or leased them, zero otherwise. Leased investment is considered as reversible because normally, as part of the leasing contract, the client acquires the option to return the good. As a consequence, leasing companies only finance the purchase of goods that enjoy large second-hand markets. Given that the question about leased investment dropped since the 2003 survey, revst data are partially unavailable for 2003 and 2004. In order to avoid a loss of information, we constructed a second reversibility indicator (REV) at company level by collapsing annual revst data by firm. REV is equal to one if collapsed revst is bigger than 1, i.e. if the firm operated at least for two years either on the second-hand or the leasing markets during the sample period. Alternatively we imputed missing revst data on the basis of a probit model whose regressors are main dummy variables listed above (i.e. the same used in year-by-year regressions, see Section 3).

**Cash flow, net of Dividends paid.** It is a no-dummy control variable. Individual data at current prices are from CADS database: \( CD_{it} = \text{cash flow (item 9.14) minus dividends (item 7.6)} \). In order to obtain data at constant prices, \( CD_{it} \) has been deflated by using \( PY_{st} \) (the by-industry production deflator from NA, see e.g. Bond and Meghir, 1994): \( CF_{it} = \frac{CD_{it}}{PY_{st}} \). In analogy with explanatory effective investment in \( t-1 \), in our model the cash flow regressor has been scaled by lagged stock of capital.

**Price-cost margin.** According to Domowitz et al (1986) and Guiso and Parigi (1996 and 1999), the price-cost margin \( PCM \), by firm and year (i.e. the firm’s profit margin on unit price) is defined as:

\[
PCM = \frac{Sales + \Delta\text{inventories} - Payroll - Materials}{Sales} \quad (A1.2)
\]

where CADS is the source of all variables in the formula above. In particular, \( Sales \) is the total value of sales in nominal terms (item 6.1); \( \Delta\text{inventories} \) is the change in stocks (items 6.2+6.7); \( Payroll \) is the labour costs (item 6.10); \( Materials \) is the cost of intermediate inputs (items 6.6+6.8). We then classify the \( i^{th} \) firm as having more or less market power in time \( t \) depending on whether their \( PCM_{it} \) is above or below either the median value of the firm’s industry in time \( t \) or the median value of the firm’s industry (see also Section 5).
**Openness indicator.** The intensity of competition from foreign companies is measured by the openness indicator $OP_{st}$ defined as: 

$$OP_{st} = \frac{M_{st} + X_{st}}{2 \times V_{st}},$$

where $M_{st}$ and $X_{st}$ are respectively the value of the sectoral flows of imports and exports ISTAT foreign trade statistics, and $V_{st}$ is the NA’s value added at factor costs. The indicator has been computed by using in the denominator the value added at base prices, and the value of production (both at factor costs and at base prices) with no significant change in the estimates.

**Labour turnover indicator and labour flexibility in working hours.** The two indicators are available at company-year level from the SIM data set. The labour turnover is defined as:

$$WT_{it} = \frac{I_{it} + F_{it}}{W_{it}}$$

where $I_{it}$ and $F_{it}$ are respectively the average number of incumbent and of fired/retired workers by company, and $W_{it}$ is the average number of workers effectively employed during $t$. The labour flexibility in working hours is defined as:

$$WH_{it} = \frac{OH_{it} + CIG_{it}}{TH_{it}}$$

where $OH_{it}$ and $CIG_{it}$ are respectively the total number of overtime and of CIG hours by company, and $TH_{it}$ is the total number of hours effectively worked in that company during $t$. $OH_{it}$ has been collected only since 1998, so that the indicator is available over the 1998-2004 period.
Appendix A2: Matching investment plans and realisations

In the main text, specification (1) is based on expectations, for \( t+1 \), about investments, demand and demand growth, formed on the basis of the information set available in \( t \). Obviously, if all plans were fully carried out, the use, as the dependent variable, of investment realisations in \( t+1 \) (i.e. \( \frac{I_{it+1}}{K_{it}} \)), rather than planned investments (i.e. \( \frac{I_{it+1}}{K_{it}} \)) would lead to the same estimation results outlined in previous sections.

To what extent planned and actual investments differ can be assessed on empirical grounds. Thanks to the informative content and to the time dimension of the SIM (see Appendix A1.1), we are able to match investment plans made in \( t \) with the corresponding realisations in \( t+1 \) for all those companies belonging to both \( t \) and \( t+1 \) sample data-sets. Note that matching implies losing observations because of both attrition and missing realisations for the year 2005. Therefore, we can measure the discrepancy between nominal investments planned for \( t+1 \) (\( INV_{it+1} \)) and effective investments in \( t+1 \) (\( INV_{it+1} \)), in order to summarise its statistical relevance. We will call this indicator as rate of investment plans realisation, \( RIPR_{it+1} = 100 \times \frac{INV_{it+1} - INV_{it+1}}{INV_{it+1}} \). We arbitrary assume that a company’s plans are almost-fully carried out if its actual investment in \( t+1 \) is within 5 percent above or below the plan it made in \( t \), i.e. if \( |RIPR_{it+1}| < 5\% \).

In the SIM 11,044 matching observations, only 9.6 percent of cases fulfils the \( |RIPR_{it+1}| < 5\% \) condition. This share is slightly lower than the one (9.8 percent) obtained by focusing on the 5,770 observations belonging to the estimation sample of equation (1) and by using real (instead of nominal) investments data to compute: \( RIPR_{it+1} = 100 \times \frac{I_{it+1} - I_{it+1}}{I_{it+1}} \).

With real investment data, \( RIPR_{it+1} \) slightly improves though the shift from matching nominal investments (SIM case) to matching real investments (equation (1) estimation sample) introduces an additional source of noise due to investments price forecasting.

If we concentrate on firms forecasting ability of their future demand by comparing expected demand in \( t \) for \( t+1 \) and actual demand in \( t+1 \), the share of companies with discrepancy, in absolute value, lower than 5% increases to 34.2 percent in the SIM (nominal demand) case, and to 36.5 percent in the equation (1) estimation sample (real demand). This fact suggests that future demand is much easier to be predicted than investment activity.

From a descriptive point of view, a 10 per cent share of cases in which investment plans are almost-met seems a very poor proportion, based on an arbitrary 5 per cent-range assumption about \( RIPR_{it+1} \). Therefore, the empirical relevance of using either planned or actual investments to explore the investment-uncertainty relationship can be assessed by using estimation methods: if actual and planned investments substantially differ because of the accrual of new information from \( t \) to \( t+1 \), the choice of the investment measure in the left-hand-side of our model will lead to different inferences (and perhaps conclusions).

Table A2.1 reports the estimates from a number of econometric exercises, where the dependent variable, \( \frac{I_{it+1}}{K_{it}} \), of equation (1) is replaced by its actual realisations, \( \frac{I_{it+1}}{K_{it}} \). Given that \( \frac{I_{it}}{K_{it-1}} \) is listed among the explanatory variables, the model on which we base the
inferences of Table A2.1 is a classical dynamic panel model. In such circumstances the conditions of absence of correlation between regressors and the error term are no longer valid, and a GMM approach is necessary to obtain consistent and efficient parameters’ estimates.

| Tab. A2.1 |
|---|---|---|---|---|
| **ESTIMATION BY MATCHING ACTUAL AND PREDICTED DATA** | (1) | (2) | (3) | (4) |
| **dependent variable:** | $\frac{I_{it+1}}{K_{it}}$ | $\frac{I_{it+1}}{K_{it}}$ | $\frac{I_{it+1}}{K_{it}}$ | $\frac{I_{it+1}}{K_{it}}$ | $\frac{I_{it+1}-I_{it+1}}{K_{it}}$ |
| **Regressor:** | | | | | |
| $\frac{Y_{it+1}}{K_{it}}$ | 0.0077 | 0.0033 | 0.0013 | (0.0024) | |
| | (0.0046) | (0.0024) | (0.0022) | | |
| $\frac{Y_{it+1}}{K_{it}}$ | | 0.0092 | 0.0051 | (0.0035) | |
| | | (0.0054) | (0.0035) | | |
| $\frac{u(Y_{it+1})}{K_{it}}$ | -0.0388 | -0.0144 | -0.0091 | 0.0071 | 0.0918 |
| | (0.0422) | (0.0850) | (0.0483) | (0.0729) | (0.3615) |
| $\frac{I_{it}}{K_{it}}$ | 0.0727 | 0.0007 | 0.0783 | 0.0114 | 0.0133 |
| | (0.0276) | (0.0256) | (0.0278) | (0.0251) | (0.0129) |
| $\frac{I_{it+1}}{K_{it}}$ | 0.4220 | 0.4172 | -0.4598 | (0.0500) | (0.1509) |
| | (0.0420) | (0.0462) | | | |
| $\frac{Y_{it+1}-Y_{it+1}}{K_{it}}$ | -0.0001 | | | (0.0064) | |

Over-identifying restrictions **2**:  
**J test statistics** | 65.44 | 78.78 | 61.08 | 66.55 | 61.07 |
| **degr. of freedom** | 57 | 76 | 52 | 71 | 55 |
| **P-values** | 20.71% | 39.10% | 18.21% | 62.74% | 26.70% |

Autocorrelation tests (p-values) **3**:  
1st order | 1.36% | 3.93% | 1.20% | 3.67% | 4.04% |
| 2nd order | 23.52% | 55.61% | 28.76% | 56.57% | 46.97% |
| $\alpha_1 = \alpha_2 = \alpha_3 = 0$ **4** | 0.05% | 16.72% | 0.01% | 9.76% | 16.82% |
| Models’ fitting **5** | 0.0711 | 0.3400 | 0.0755 | 0.3395 | 0.3486 |

(1) Blundell and Bond (1998) GMM-sys estimates, with robust standard errors (in brackets), from an unbalanced panel of 5,770 observations for 1,761 companies; average $T_i = 3.28$. (2) Hansen (1982) overidentifying restrictions (df) test, $\chi^2$(df). (3) Arellano and Bond (1991) residuals’ autocorrelation of order $p$, $\chi^2(p)$. (4) P-values of the Wald statistic testing the joint significance of demand, of uncertainty and of lagged effective investments parameters, $\chi^2(3)$. (5) Measured as the squared sample correlation between the actual and fitted values.

In Table A2.1 we present results from the GMM-sys estimates (see Blundell and Bond, 1998); as instruments, we use lags $t-2$ and $t-3$ of the explanatory variables. The robustness of our findings is confirmed when Arellano and Bond (1991) GMM-dif estimator is applied (results are not reported but available upon request). In the lower part of the table it
is shown that the estimation results pass the specification tests (overidentifying restrictions and second-order residual autocorrelation).

Column (1) in Table A2.1 reports the estimates of our basic specification (1) in which actual investment is used as the dependent variable. Results, if compared with those reported in the first column of Table 4, suggest: a relevant loss of magnitude in the effect of expected demand on actual investment, 10% (but not 5%) significantly different from zero; a no longer statistically significant effect of uncertainty; and a strong significance of the autoregressive parameter, reflecting the presence of dynamics in the actual investments’ pattern. The relevance of the $\alpha_3$ parameter, together with a weak evidence of expected-demand effects on actual investment ($\alpha_1$), explain the strong rejection of the joint constraint $\alpha_1 = \alpha_2 = \alpha_3 = 0$ ($p$-values are reported in the corresponding line of Table A2.1).

Though these results point out the irrelevance of demand uncertainty to explain actual investments, one should expect that firms with higher perceived uncertainty in $t$, and thus with lower investment planned in $t$ for $t+1$, will end up with lower actual investment in $t+1$. In order to validate this hypothesis, column (2) reports the estimation results from a model in which investments planned in $t$ for $t+1$, $\frac{I_{it+1}}{K_{it}}$, are added to the list of explanatory variables of the model estimated in column (1). Results suggest that, despite the very low share of cases in which plans are met (see above), investment plans are the main driving force of actual investment: almost a half of the investment plans made in $t$ is embodied in $t+1$ actual investments; the joint significance of the other explanatory variables - including dynamics - vanishes (the constraint $\alpha_1 = \alpha_2 = \alpha_3 = 0$ is not rejected with a $p$-value of 16.7%).

The findings from columns (1) and (2) are confirmed by substituting, in the list of the explanatory variables, the demand expected in $t$ for $t+1$ with the actual demand in $t+1$ (see columns (3) and (4)). It becomes even more evident that uncertainty is irrelevant, and that actual demand has a smaller effect because it is partly embodied in the planned investments when they are added to the model specification in column (4).

The inclusion of investment plans (in columns 2 and 4) considerably raises the explanatory power of models for effective investments, as evidenced by the squared coefficient of correlation between actual and fitted values (in the bottom line of Table A2.1). This result raises the question about the rationality of the investment plans: if plans embody all the information available in $t$ on expected future demand and its uncertainty, differences between actual and planned investments should be dictated only by news. In order to quantitatively explore this point, we estimate the following model, that accounts for a number of sources of forecast error, defined as the difference between plans and realisations:

$$
\frac{I_{it+1} - I_{it+1}}{K_{it}} = \alpha_i + \lambda_i + \beta_1 \frac{Y_{it+1}}{K_{it}} \left[ 1 + \beta_2 \frac{Y_{it+1}}{Y_{it+1}} \right] + \beta_3 \frac{I_{it}}{K_{it}} + \\
+ \beta_4 \frac{I_{it+1}}{K_{it}} + \beta_5 \frac{Y_{it+1} - Y_{it+1}}{K_{it}} + \\
+ \alpha_i Z_{it} + \nu_{it+1}
$$

(A2.1)

The explanatory variables in the first line of equation (A2.1) exactly represent the same information set available at time $t$ and embodied by equation (1). In principle, this information might be further exploited to reduce the forecast error; if not, the investment plans are rational and the restrictions $\beta_1 = \beta_2 = \beta_3 = \beta_4 = \beta_5 = 0$ hold.

The explanatory variables in the second line of equation (A2.1) respectively measure the effect of: investment plans made in $t$ for $t+1$ ($\beta_4$ parameter); the one-step-ahead prediction
errors of demand ($\beta_5$ parameter). If plans are an unbiased predictor of actual investments, it must be $\beta_4 = 0$. The constraint $\beta_5 = 0$ implies that the demand forecast errors are not a significant explanation of the discrepancy between planned and realised investments. The error term $\nu_{it+1}$ represents the (unpredictable) news occurring from $t$ to $t+1$. Finally, the vector $Z_t$ includes the same additional control variables of equation (1).

Estimation results are reported in column (5) of Table A2.1. The parameters’ estimates for the effects of expected demand, uncertainty and lagged actual investments are not significant, both individually and jointly (the p-value of the hypothesis that $\beta_1 = \beta_2 = \beta_3 = 0$ is equal to 16.8%). As for previous results, investment plans appear to be rational with respect to all the relevant information available in $t$ (the same result is obtained in a model that excludes both investment plans and errors in forecasting demand, see Guiso and Parigi, 1999).

As far as the effect of errors made in forecasting demand one-step-ahead is concerned, $\beta_5$ parameter’s estimate is very close to zero and not significant. This result supports what previously noted: given that the discrepancy between actual and predicted demand is considerably smaller than that of investments, such forecast errors do not affect the discrepancy between investment plans and realisations. Finally, only $\beta_4$ parameter estimate is significantly negative, suggesting that the forecast error of investments is negatively driven by the amplitude of the plan: the bigger the plan, the higher the (negative) discrepancy between actual and planned investments.

Overall, the results of this section lead to the following two main findings.

Firstly, the evidence reported in Table A2.1 can explain the controversial sign and the low significance of the effect of uncertainty on investments, as reported by the empirical literature solely based on actual and accounting data.

Secondly, investments planned in $t$ for $t+1$ are able to explain actual investments in $t+1$ much better than the effective demand in $t+1$. This despite they do not convey any news occurred from $t$ to $t+1$.

Together, these results make evident that data from survey’s questionnaires provide an invaluable source of information for better explaining companies’ behaviour and for predicting their investment pattern. In fact, the availability of plans, expectations, and perceptions directly asked to firms avoids the use of proxies based on very restrictive models and/or assumptions which may be misleading.
References


