TESTING FOR TRUE STATE DEPENDENCE IN POVERTY DYNAMICS

Anna Giraldo, Enrico Rettore and Ugo Trivellato
Dipartimento di Scienze Statistiche, Università di Padova

This version: October 2006

For additional information please contact:

Enrico Rettore
Dipartimento di Scienze Statistiche, Università di Padova
Via Cesare Battisti, 241 - 35121 Padova – Italy
E-mail: enrico.rettore@stat.unipd.it
Fax: ++39/0498274170
Phone: ++39/0498274164
Testing for true state dependence in poverty dynamics

Anna Giraldo, Enrico Rettore and Ugo Trivellato
Dipartimento di Scienze Statistiche, Università di Padova

Abstract
Evidence from several countries is that any household experiencing poverty today is much more likely to experience it again, which may be due to both true state dependence (TSD) and unobserved heterogeneity (UH). We deal with UH by specifying two sources of it: (i) the household’s ability to obtain income in a specific time period and (ii) the way in which this ability evolves from that time period onwards. We test for TSD using the panel component of the Italian Survey on Household Income and Wealth (SHIW). After testing for the ignorability of the massive attrition plaguing the panel and accepting it, we did not find any sign of TSD.

Keywords: Attrition ignorability, Discrete response panel data models, Poverty dynamics.

JEL-code: I32, C23, C25

1. Introduction
There is evidence from several countries that any household experiencing a poverty spell today is much more likely to experience it again in the future (for comparative cross-country analyses, see Duncan et al., 1993, Oxley, Dang and Antolín, 2000, Mejer and Linden, 2000, and OECD, 2001). Let y_{it}=1 if the i-th household disposable income falls below the poverty line at time t, and y_{it}=0 otherwise. As an example referring to Italy, using data from the panel component of the Italian Survey on Household Income and Wealth (SHIW), late 1980s/early 1990s, Trivellato (1998) obtained the following figures:

\[
\begin{align*}
\Pr(y_{it}=1|y_{it-1}=0) & \equiv .05 \\
\Pr(y_{it}=1|y_{it-1}=1) & \equiv .50,
\end{align*}
\]

which clearly document a particularly high degree of persistence of poverty, as measured on disposable income.

There are two logically distinct (albeit possibly concomitant) processes which may generate such a persistence of poverty. Households might be heterogeneous with respect to characteristics which are relevant for the chance of falling into poverty and persistent over time. If this is the case, then any household likely to experience poverty at time t because of (possibly unobserved) adverse characteristics, will also be likely to experience poverty in any other period because of the very same adverse characteristics. We refer to this process as steered by unobserved heterogeneity (UH).

Instead, it may be that the fact of experiencing poverty in a specific time period, in itself, increases the probability of undergoing poverty in subsequent periods. Since the work of Heckman (1978), such a process is said to exhibit true state dependence (TSD).
Distinguishing between the two processes is crucial, since the policy implications are very different. If the persistence of poverty is (at least partly) due to TSD, then it makes sense to force households out of poverty at time t in order to reduce their chance of experiencing poverty in the future. But if the persistence of poverty is due only to UH, any policy aimed at breaking the ‘vicious circle’ via monetary transfers to the poor is pointless: forcing households out of poverty today does not affect their adverse characteristics, and hence does not reduce their chance of experiencing poverty spells in subsequent periods.1

It is worth noting that much of the empirical literature only descriptively juxtaposes the two potential sources of poverty persistence, without trying to ascertain whether, after accounting for UH, there is also TSD, and without assessing their respective degrees of importance. For instance, Oxley, Dang and Antolín (2000, p. 6) summarise the key results of their study across six OECD countries in the following terms: “(ii) The probability of exiting poverty falls with previous experiences in poverty. At the same time, there is a high probability of falling back into poverty. Thus, for the longer-term poor, low probability of exit and high probability of re-entry tend to reinforce each other. … (iv) The characteristics of households experiencing shorter spells in poverty tend to be different from those of the longer-term poor. A large share of the longer-term poor would appear to be women, lone parents and elderly single individuals. A significant share of the longer-term poor are in paid work.”

In this paper, we test for TSD while allowing for the presence of UH. We use a panel sample from SHIW, a survey carried out on a two-year basis, over the period 1989-2004. Since the works of Heckman (1978, 1981a), it is well-known that panel data allow the issue to be tackled. By studying the pattern of the sequences $\{y_{i1}, y_{i2}, ..., y_{iT}\}$, we can identify whether TSD is at work. Recent papers focusing on the question of UH and TSD in poverty dynamics, and on the related issues of endogeneity of initial conditions and panel attrition, include those of Stevens (1999), Devicienti (2002), Cappellari and Jenkins (2002)2.

As regards the substantive issue of interest, in order to test properly for TSD in poverty/non-poverty sequences based on disposable income, we argue that it takes accounting for two sources of UH: (i) the household’s ability to obtain income at a specific, initial time period, and (ii) the way in which this ability evolves from that time period onwards. A consequence of this double source of UH is that simple models for TSD in the presence of UH (e.g., fixed-effect models) may badly miss the point, as shown in section 3. In section 4, we develop a richer model, allowing for more complex dynamics.

Since the SHIW panel is plagued by massive attrition, preliminarily we develop a test on whether such sample selection is ignorable for the purpose of testing for TSD (section 5). The main results of the model of interest are presented in section 6, and are clearly in favour of parsimonious specification of the two sources of heterogeneity, with no evidence of TSD. In Section 7, we carry out some sensitivity analyses, aimed at ascertaining the robustness of results to changes in the poverty line.

1 The argument is relevant for programmes of income support viewed (partly) as an active policy, inspired by an efficiency rationale – helping the poor to exit from poverty in order to stay out of it definitely. Of course, it does not call into question the reasonableness of such programmes simply as a passive welfare policy, resting on equity grounds. It also clearly leaves room for other active anti-poverty programmes, aimed at contrasting the adverse personal and/or household characteristics and permanent shocks responsible for the chance of persistently experiencing poverty.

2 Related models have been applied to studies of income mobility. See, among others, Stewart and Swaffield (1999), Cappellari (2001), Cappellari and Jenkins (2004).
Final results are presented in Section 8, and may be summarised in two statements. Firstly, while it is apparent that the panel sample is biased by attrition, with households less likely to experience poverty surviving longer in the sample, we also find clear-cut evidence that attrition is ignorable for the specific purpose of testing for TSD. Secondly, after accounting for the two sources of heterogeneity, we do not find any sign of TSD.

2. Testing for TSD in the presence of UH: the textbook model

The textbook model to test for TSD in the presence of UH, as adapted to our problem, is the following (see, for instance, Hsiao, 1986)

\[y_{it} = I(\alpha_i + \varphi y_{i,t-1} + \varepsilon_{it} < p_l) \]

(1)

where:

- \(I(.) \) is the function equal to 1 if the condition in its argument is satisfied and to 0 otherwise;
- the binary variable \(y_{it} \) is equal to 1 if the disposable income \(I_{it} \) is below the poverty line \(p_l \) and zero otherwise³;
- the model allows for UH through \(\alpha_i \), an unobserved characteristic which makes individuals heterogeneous in a time-invariant way: the lower \(\alpha_i \), the higher the chance for the \(i \)-th individual to experience \(y_{it}=1 \) in each time period;
- \(\{ \varepsilon_{it} \} \) is a sequence of serially independent, zero mean, identically distributed random variables.

The value of \(\varphi \) determines whether the sequence \(\{ y_{it} \} \) features TSD. If \(\varphi<0 \), then experiencing poverty at time \(t-1 \), \(y_{i,t-1}=1 \), causes a lower disposable income at time \(t \), hence increases the chance to experience \(y_{it}=1 \):

\[\Pr(y_{it}=1 | y_{i,t-1}=1, \alpha_i) = \Pr(\varepsilon_{it} < -\alpha_i - \varphi) > \Pr(\varepsilon_{it} < -\alpha_i) = \Pr(y_{it}=1 | y_{i,t-1}=0, \alpha_i). \]

With reference to this framework, an adequate representation for UH is crucial for proper testing for TSD. A direct check on whether \(\Pr(y_{it}=1 | y_{i,t-1}=1) > \Pr(y_{it}=1 | y_{i,t-1}=0) \) does not provide this, since in the presence of UH (\(\text{var}\{\alpha_i\}>0 \)) we are bound to observe \(\Pr(y_{it}=1 | y_{i,t-1}=1) > \Pr(y_{it}=1 | y_{i,t-1}=0) \), even if \(\varphi=0 \).

Moving from model (1), alternative strategies to implement the test for TSD include (i) conditioning on a sufficient statistic for \(\alpha_i \), and (ii) imposing some structure on the distribution of \(\alpha_i \) (see Arellano and Honoré, 2001, for an up-to-date review).

The first strategy was pioneered by Chamberlain (1982, 1985). It works in those instances in which a sufficient statistic, \(SS_i \), say, exists for parameter \(\alpha_i \). Exploiting this sufficient statistic, \(\Pr(y_{i1}, ..., y_{iT}; \varphi, \alpha_i) \) – the probability of observing a specific sequence on the \(i \)-th unit conditional on \(SS_i \) – turns out to be independent of \(\alpha_i \), thus allowing us to infer on \(\varphi \).

As regards the second strategy, by assuming that UH is distributed in a specific way, we can obtain a likelihood function for \(\varphi \) by integrating out the unobserved \(\alpha_i \). There is an additional problem here with initial condition \(y_{i1} \), because the analyst very often does

³ We reverse the inequality with respect to the conventional practice, in order to be consistent with the notation used throughout the paper, where \(y_{i1}=1 \) denotes that the \(i \)-th household at time \(t \) is poor.
not know whether y_{it} has been generated by the same model as the subsequent observations (see Heckman, 1981b).

3. How does income evolve over time? A flexible specification for UH

In this section, we show why the textbook model (1) does not provide an adequate representation of the features of poverty dynamics.

Following Hall (1978), let us represent disposable income I_{it} as:

$$I_{it} = p_{it}I_{i} + S_{it}, \quad I_{it-1}^P \perp S_{it}. \quad (2)$$

Here, I_{it-1}^P represents the expected income for time t on the basis of the information available up to time $t-1$. In the absence of any unexpected event, current income at time t equals I_{it-1}^P. S_{it} represents unexpected departures of current income from I_{it-1}^P, as seen from time $t-1$. Being a prediction error, S_{it} is orthogonal to the predicted value I_{it-1}^P.

Moreover, let us represent S_{it} as:

$$S_{it} = u_{it} + v_{it}, \quad (3)$$

where u_{it} is the permanent component of the shock. It summarises the impact of all new information that becomes available in period t about the household lifetime well-being. In this sense, it lastingly affects income from time t onwards. As for v_{it}, it is the transitory component of the shock, which affects income only at time t.

As a consequence, the sequence of expected income follows a random walk:

$$I_{it}^P = I_{it-1}^P + u_{it}, \quad (4)$$

with a possible stochastic trend if $E\{u_{it}\} \neq 0$, while the sequence of first differences in current income follows a MA(1) process:

$$\Delta I_{it} = u_{it} + v_{it} - v_{it-1}. \quad (5)$$

Compared with model (1), there are two sources of across-household heterogeneity here. Households differ with respect to their expected income at time $t=1$ and they also differ with respect to the way in which the sequence of permanent shocks u_{it} shapes the pattern of expected income from period $t=1$ onwards. Model (1) emerges as a special case of model (2)-(3) by setting $u_{it}=0$, in which case $I_{it}^P = I_{it}^P$ plays as the time-invariant unobserved characteristic α_i in (1), with respect to which households are heterogeneous.

In this set-up, TSD adds a further source of serial dependence:

$$I_{it} = I_{i0} + u_{i1} + \ldots + u_{it} + \varphi y_{it-1} + v_{it}, \quad t=1, T. \quad (6)$$

The qualitative difference made by TSD ($\varphi < 0$) is the following one. If $\varphi=0$, then:

$$y_{it} \perp v_{it}, \quad \forall s \neq t, \quad (7)$$

i.e., the transitory shock affects only contemporary income. Instead, if $\varphi < 0$, then I_{it} is not independent of lagged values of the transitory shock v_{it}.

In the following, we model sequence $\{y_{it}\}$ according to (2)-(3), that is to say, maintaining the hypothesis:
\(H_0: \varphi = 0, \) \hspace{1cm} (8)

and develop simple tests for this hypothesis.

Thus, our model for the sequence \(\{y_{it}, \ldots, y_{iT}\} \) under the maintained hypothesis of no TSD, is:

\[
y_{it} = I (I_{i0}^{p} + u_{it} + \ldots + u_{it} + v_{it} < pl), \quad t=1, T.
\] \hspace{1cm} (9)

With reference to this specification, four comments are in order. First, there is a strand in the literature that models the dynamics of disposable income, and then recovers from that model the implications for the dynamics of poverty (see Lillard and Willis, 1978, and Stevens, 1999, section VI, \textit{inter alia}). As it is apparent, we take a different route. We model directly the poverty/non poverty sequence \(\{y_{it}\} \), that is to say, transition probabilities into and out of the lower portion of the income distribution (as, e.g., Stevens, 1999, sections III-V; the same route is taken by Stewart and Swaffield, 1999, in modelling low pay dynamics). The motivation for our choice is that the dynamics of high income is hardly relevant to the study of the dynamics of poverty. Thus, our analysis has the advantage of being unaffected by movements within the upper portion of the distribution of income. There is, of course, a price to pay for this approach, which consists of imposing an arbitrary cut-off – the poverty line. Clearly, results might be sensitive to it. To mitigate this arbitrariness, we make use of three thresholds, reasonably spread over the range usually considered for poverty analyses, and check whether results change as the poverty line is modified.

Second, by casting it as a problem of testing the null hypothesis (8) against the alternative of TSD – \textit{not} as a problem of estimating the degree of TSD \(\varphi \) - we do not have to solve any initial condition problem.

Third, a word of caution need to be added on how rejection of the null hypothesis should be interpreted. In principle, rejecting \(H_0 \), \textit{i.e.}, obtaining evidence that \(y_{it} \) is \textit{not} independent of lagged values of \(v_{it} \), need not be due to TSD, in that serially correlated transitory shocks may also induce a departure from (7). Note, however, that if we accept (7), we unambiguously conclude against TSD.

Finally, note that equation (9) allows us to assess the consequences of mistakenly testing for TSD in poverty/non-poverty sequences within model (1), \textit{i.e.}, omitting across-household heterogeneity due to the sequence of permanent shocks. To exemplify, consider the couple of observations \((y_{i2}, y_{i3}) \). Despite the absence of TSD in (9), conditional on \(I_{i1}^{p} \) they are \textit{not} independent, since they are both affected by the permanent shock \(u_{i2} \). Formally:

\[
\Pr(y_{i3} = 1 | y_{i2} = 1, I_{i1}^{p}) > \Pr(y_{i3} = 1 | y_{i2} = 0, I_{i1}^{p}).
\]

Since model (1) does not account for this (positive) dependence of \(y_{i3} \) on \(y_{i2} \), within it this dependence is picked up by the TSD parameter. Once again, it looks like TSD but in fact it is only omitted heterogeneity.

4. An IV test for TSD

In this section we present the econometrics relevant to our test. Exploiting the notation introduced in the previous section disposable income at time \(t \) is linked to the permanent
income at time $t-1$, to permanent and transitory shocks at time t and to the experience of a spell of poverty at time $t-1$ by the following relationship:

$$I_{it} = I_{it-1} + \theta_t u_{it} + \sigma_t v_{it} + \varphi y_{it-1}, \quad (10)$$

with $y_{it} = I(I_{it} < p_l)$. Here we are redefining u_{it} and v_{it} as unit variance shocks, so that the standard deviation of the permanent and transitory shocks hitting disposable income at time t are equal to θ_t and σ_t, respectively.

Let F be the cumulative distribution of v_{it}, which we assume stationary. Then, the probability to experience a poverty spell at time t conditional on past history and on the contemporary permanent shock is:

$$Pr(I_{it} < p_l) = F[(c - I_{it-1} - \theta_t u_{it} - \varphi y_{it-1})/\sigma_t] \quad (11)$$

(to simplify the notation here and in the following we leave implicit the conditioning variables).

In the following we develop our analysis on a first order Taylor series expansion of (11) approximating it in a neighbourhood of $\theta_t/\sigma_t = 0$, $\sigma_{t-1}/\sigma_t = 1$ and $\rho/\sigma_t = 0$:

$$Pr(I_{it} < p_l) = Pr(I_{it-1} < p_l) - \varphi f_{it-1} (y_{it-1} - y_{it-2})/\sigma_{t-1} - \theta_t f_{it-1} u_{it} /\sigma_{t-1} + \left(\sigma_{t-1}/\sigma_t - 1\right) f_{it-1} (c - I_{it-1})/\sigma_{t-1}, \quad (12)$$

in which we have set f_{it-1} as the probability density associated to F as evaluated at $(c - I_{it-1})/\sigma_{t-1}$.

Equation (12) displays the basic feature of the dynamics of poverty:

- first, the probability at time t is obtained from the probability at time $t-1$ by adding the permanent shock u_{it} scaled by the individual specific parameter $\theta_t f_{it-1}/\sigma_{t-1}$;
- second, if $\sigma_{t-1}/\sigma_t < 1$ ($\sigma_{t-1}/\sigma_t > 1$), i.e. if the variance of the transitory shock increases (decreases) from time $t-1$ to time t, subjects whose permanent income was below the poverty line at time $t-1$ decrease (increase) their probability to experience a poverty spell, while subjects whose permanent income was above the poverty line increase (decrease) it. The intuition is that if the random variability of income increases (decreases) then the probability to flow from one state to the other increases (decreases) as well;
- third, in the presence of TSD, i.e. $\varphi < 0$, subjects entering poverty at time $t-1$ ($y_{it-1}=1$ and $y_{it-2}=0$) at time t have a higher chance to experience again a spell of poverty. On the other hand, subjects leaving poverty at time $t-1$ ($y_{it-1}=0$ and $y_{it-2}=1$) have a lower chance to experience a spell of poverty at time $t-1$.
- Finally, note that the one-period variation of the probability to experience a spell of poverty, $Pr(Y_{it} < c) - Pr(Y_{it-1} < c)$, is scaled by the individual specific term f_{it-1}. Since this individual specific term increases as the permanent income at time $t-1$ gets close to the poverty line then permanent shocks, TSD and variation over time of the transitory shock shape the dynamics of poverty only for those individuals whose permanent income is far from the poverty line. Individuals whose permanent income at time $t-1$ is far from the poverty line are unaffected by these forces.
To derive a test of the null hypothesis \(\varphi = 0 \) against the alternative \(\varphi < 0 \) let us start with the simpler case in which transitory shocks feature a stationary variance. Then, equation (12) simplifies to:

\[
Pr(I_\varphi < p) = Pr(I_{\varphi-1} < p) - \varphi f_{\varphi-1} (y_{\varphi-1} - y_{\varphi-2})/\sigma - \theta f_{\varphi-1} u_\varphi /\sigma. \tag{13}
\]

Let \(\varepsilon_\varphi \) be the deviation of \(y_\varphi \) from its mean \(Pr(Y_\varphi < c) \) and rewrite (13) as

\[
y_\varphi = y_{\varphi-1} - \varphi f_{\varphi-1} (y_{\varphi-1} - y_{\varphi-2})/\sigma - \theta f_{\varphi-1} u_\varphi /\sigma + \varepsilon_\varphi - \varepsilon_{\varphi-1}. \tag{14}
\]

This is a regression in which both regressors are correlated to the component \(\varepsilon_\varphi - \varepsilon_{\varphi-1} \) of the disturbance term (but note they are not correlated to \(\theta f_{\varphi-1} u_\varphi /\sigma \) since the permanent shock is orthogonal to past history). Note however that in the absence of TSD \(\varepsilon_{\varphi-2} \) is a valid instrument for the explanatory variable \(y_{\varphi-1} \) (it is uncorrelated with both \(u_\varphi \) and \(\varepsilon_{\varphi-1} \)). As a consequence, if the null hypothesis holds true the resulting IV estimate should depart from 1 only because of sampling variability.

If the null fails to hold it is straightforward to show that the IV estimate is systematically smaller than 1. This is because as a result of the persistence induced by TSD the following inequality holds:

\[
E(y_{\varphi} - y_{\varphi-1} | y_{\varphi-2} = 1) < E(y_{\varphi} - y_{\varphi-1} | y_{\varphi-2} = 0). \tag{15}
\]

By rearranging it we end up with the inequality:

\[
[E(y_\varphi | y_{\varphi-2} = 1) - E(y_\varphi | y_{\varphi-2} = 0)]/[E(y_\varphi | y_{\varphi-2} = 1) - E(y_\varphi | y_{\varphi-2} = 0)] < 1, \tag{16}
\]

where the left hand side term is the IV estimand in the case we are considering.

Summing up, when the variance of the transitory shock is stationary testing for TSD amounts to reject the null when the estimate of the coefficient of \(y_{\varphi} \) on \(y_{\varphi-1} \) using \(y_{\varphi-2} \) as an IV is smaller than 1 more than it is expected due to sampling variability.

When we let the variance of \(v_\varphi \) to change over time \(y_{\varphi-2} \) is no longer a valid instrument since it is correlated to \((\sigma_{\varphi}/\sigma_{\varphi-1}) f_{\varphi-1} (c - Y_{\varphi-1}^c)/\sigma_{\varphi-1} \) (negatively if \(\sigma_{\varphi}/\sigma_{\varphi-1} < 1 \), positively otherwise). We now show that at the first order of approximation \((y_{\varphi-2} - y_{\varphi-3})\) is a valid instrument in the first-differenced model:

\[
y_{\varphi} - y_{\varphi-1} = -\varphi f_{\varphi-1} (y_{\varphi-1} - y_{\varphi-2})/\sigma_{\varphi-1} - \theta f_{\varphi-1} u_{\varphi}/\sigma_{\varphi-1} + (\sigma_{\varphi}/\sigma_{\varphi-1}) f_{\varphi-1} (pl - I_{\varphi-1}^p)/\sigma_{\varphi-1} + \varepsilon_{\varphi} - \varepsilon_{\varphi-1}. \tag{17}
\]

Rewrite the last equation for time \(t-2 \):

\[
y_{\varphi-2} - y_{\varphi-3} = -\varphi f_{\varphi-3} (y_{\varphi-3} - y_{\varphi-4})/\sigma_{\varphi-3} - \theta f_{\varphi-3} u_{\varphi-2}/\sigma_{\varphi-3} + (\sigma_{\varphi}/\sigma_{\varphi-2}) f_{\varphi-3} (pl - I_{\varphi-2}^p)/\sigma_{\varphi-3} + \varepsilon_{\varphi-2} - \varepsilon_{\varphi-3}. \tag{18}
\]

The covariance between \((y_{\varphi-2} - y_{\varphi-3})\) and the unobservables in (17) does not vanish only because of the term:

\[
\text{Cov}[y_{\varphi-2} - y_{\varphi-3}, (\sigma_{\varphi}/\sigma_{\varphi-2}) f_{\varphi-3} (pl - I_{\varphi-2}^p)/\sigma_{\varphi-3}].
\]
since \(u_t \) and \(\varepsilon_{it-1} \) are uncorrelated with past history. Working out this covariance we get:

\[
(-\phi /\sigma_{\tau t}) (\sigma_{\tau t}/\sigma_{\tau t-1}) \text{cov}(f_{it-3} (y_{it-3} - y_{it-4}), f_{it-3} (pl - l_{it-1})/\sigma_{\tau t}) + \\
(-\theta /\sigma_{\tau t}) (\sigma_{\tau t}/\sigma_{\tau t-1}) \text{cov}(f_{it-4} u_{it}, f_{it-3} (pl - l_{it-1})/\sigma_{\tau t}) + \\
(\sigma_{\tau t}/\sigma_{\tau t-1}) (\sigma_{\tau t}/\sigma_{\tau t-1}) \text{cov}(f_{it-1} (pl - l_{it-1})/\sigma_{\tau t}, f_{it-3} (pl - l_{it-1})/\sigma_{\tau t}).
\]

Apparently, in a neighbourhood of the point we chose for our Taylor series expansion the coefficients in each of the three terms are negligible allowing us to conclude that \((y_{it-2} - y_{it-3})\) is a valid instrument in equation (17).

Note however that if the null hypothesis holds true this instrumental variable is uncorrelated with the endogenous explanatory variable in (17) implying that the variance of the resulting estimate is infinitely large. To the specific purpose of testing for TSD – not to the purpose of reliably estimating the TSD parameter – a way out is to estimate the reduced form parameter by regressing \((y_t - y_{t-1})\) on the instrument \((y_{t-2} - y_{t-3})\). This is equal to zero if and only if \(\phi = 0 \).

5. Is attrition in the SHIW panel ignorable for the purpose of testing for TSD?

In the empirical analysis we make use of information on household disposable income from the SHIW. In particular, we exploit the panel component of the survey available since 1989 up to 2004 on a bi-annual\(^4\) basis.

A major problem with this panel is a severe attrition. In Tab.1 it shown how the number of households still in the survey among those entering the survey in a specific calendar year sharply decreases over time. While some of this decrease is by design most of it is out of the survey manager control.

<table>
<thead>
<tr>
<th>Year of first interview</th>
<th>Year of interview</th>
</tr>
</thead>
<tbody>
<tr>
<td>1989</td>
<td>1989</td>
</tr>
<tr>
<td>1989</td>
<td>1991</td>
</tr>
<tr>
<td>1989</td>
<td>1993</td>
</tr>
<tr>
<td>1989</td>
<td>1995</td>
</tr>
<tr>
<td>1989</td>
<td>1998</td>
</tr>
<tr>
<td>1989</td>
<td>2000</td>
</tr>
<tr>
<td>1989</td>
<td>2002</td>
</tr>
<tr>
<td>1989</td>
<td>2004</td>
</tr>
<tr>
<td>1991</td>
<td>1991</td>
</tr>
<tr>
<td>1991</td>
<td>1993</td>
</tr>
<tr>
<td>1991</td>
<td>1995</td>
</tr>
<tr>
<td>1991</td>
<td>1998</td>
</tr>
<tr>
<td>1991</td>
<td>2000</td>
</tr>
<tr>
<td>1991</td>
<td>2002</td>
</tr>
<tr>
<td>1991</td>
<td>2004</td>
</tr>
<tr>
<td>1993</td>
<td>1993</td>
</tr>
<tr>
<td>1993</td>
<td>1995</td>
</tr>
<tr>
<td>1993</td>
<td>1998</td>
</tr>
<tr>
<td>1993</td>
<td>2000</td>
</tr>
<tr>
<td>1993</td>
<td>2002</td>
</tr>
<tr>
<td>1993</td>
<td>2004</td>
</tr>
<tr>
<td>1995</td>
<td>1995</td>
</tr>
<tr>
<td>1995</td>
<td>1998</td>
</tr>
<tr>
<td>1995</td>
<td>2000</td>
</tr>
<tr>
<td>1995</td>
<td>2002</td>
</tr>
<tr>
<td>1995</td>
<td>2004</td>
</tr>
<tr>
<td>1998</td>
<td>1998</td>
</tr>
<tr>
<td>1998</td>
<td>2000</td>
</tr>
<tr>
<td>1998</td>
<td>2002</td>
</tr>
<tr>
<td>1998</td>
<td>2004</td>
</tr>
<tr>
<td>2000</td>
<td>2000</td>
</tr>
<tr>
<td>2000</td>
<td>2002</td>
</tr>
<tr>
<td>2000</td>
<td>2004</td>
</tr>
<tr>
<td>2002</td>
<td>2002</td>
</tr>
<tr>
<td>2002</td>
<td>2004</td>
</tr>
<tr>
<td>2004</td>
<td>2004</td>
</tr>
</tbody>
</table>

Source: Banca d’Italia (various years).

To document the bias resulting from attrition we partition the panel by grouping together households according to the years in which they entered and left, respectively, the panel. As an example, out of the 8,274 households in the 1989 sample we get a two-wave

\(^4\) An exception is the 1998 wave of the survey who took place three years after the previous one.
sub-panel made up of households who left the survey in 1991; a three-wave sub-panel made up of households who left the survey in 1993 and so on to conclude with the eight-wave sub-panel made up of households still in the survey in 2004. This way we get 28 mutually exclusive sub-panels.

We have evaluated the head-count ratio on selected sub-panels. It is apparent in Fig. 1 that time in the survey is correlated to the probability to experience a spell of poverty: households staying longer in the survey are less likely to fall in poverty throughout the whole time window we consider.

Fig. 1. Head-count ratios from SHIW in selected calendar years by number of years in the survey, 1989-2004

Note: Each panel refers to a specific year of interview. Number of interviews foregone by the household in the year to which the panel refers to are along the horizontal axis. Number of interviews the household experienced after the year to which the panel refers to are in the body of each panel attached to the point they refer to. As an example, the four points in the 1998 panel on the left-most column refer to households experiencing their second interview in 1998, i.e. these households entered the survey in 1995 and did not leave it yet by 1998. The lowest point refers to households who experienced three further interviews after the 1998 one, i.e. they were still in the survey in 2004; the second lowest point refers to households who experienced one further interview after the 1998 one, i.e. they left the survey after the 2000 interview.

Note however that the bias induced by attrition needs not be a problem to our test for TSD. This is because the possible explanations for the persistence of poverty we observe – only UH or also TSD – refer to the probabilities of transition between states not to the head-count ratios. If the attrition process does not bias the inference on such probabilities of transition then we say it is ignorable to our test for TSD.

To gather evidence on whether the attrition process biases inference on the transition probabilities we estimate them separately on each of the 28 mutually exclusive sub-panels. As an example, for the transition matrix 1989-91 we get seven independent estimates from...
the two-wave sub-panel 1989-91, from the first two waves of the three-wave sub-panel 1989-91-93, up to the first two waves of the eight-wave sub-panel 1989-91-…-02-04.

Tab. 2. Test for attrition ignorability in the estimation of transition probabilities, order of transition one to seven, 1989-2004

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test χ^2</td>
<td>14.76</td>
<td>25.37</td>
<td>.</td>
<td>41.15*</td>
<td>44.02**</td>
<td>.</td>
<td>20.60*</td>
</tr>
<tr>
<td>Gdl</td>
<td>12</td>
<td>22</td>
<td>28</td>
<td>30</td>
<td>28</td>
<td>22</td>
<td>12</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test χ^2</td>
<td>9.18</td>
<td>13.74</td>
<td>31.20*</td>
<td>27.27</td>
<td>.</td>
<td>10.88</td>
</tr>
<tr>
<td>Gdl</td>
<td>10</td>
<td>18</td>
<td>22</td>
<td>22</td>
<td>18</td>
<td>10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test χ^2</td>
<td>7.40</td>
<td>7.98</td>
<td>19.42</td>
<td>35.12**</td>
<td>10.66</td>
</tr>
<tr>
<td>Gdl</td>
<td>8</td>
<td>14</td>
<td>16</td>
<td>14</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Test χ^2</td>
<td>3.06</td>
<td>11.21</td>
<td>12.94</td>
<td>4.81</td>
</tr>
<tr>
<td>Gdl</td>
<td>6</td>
<td>10</td>
<td>10</td>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1989-00</th>
<th>1991-02</th>
<th>1993-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test χ^2</td>
<td>3.56</td>
<td>4.72</td>
<td>1.374</td>
</tr>
<tr>
<td>Gdl</td>
<td>4</td>
<td>6</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1989-02</th>
<th>1991-04</th>
</tr>
</thead>
<tbody>
<tr>
<td>Test χ^2</td>
<td>3.23</td>
<td>0.17</td>
</tr>
<tr>
<td>Gdl</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

** significant at level .05, * significant at level .1

If such independent estimates were equal up to sampling variability we could confidently conclude that the attrition process is ignorable to our purpose of testing for TSD. In Tab. 2 we report the usual likelihood-ratio statistics (and the corresponding degrees of freedom) separately for each transition matrix. The null hypothesis is not rejected in most cases even if a few cases there is some evidence that the estimates are not equal.

Overall, we conclude that even if the attrition process in SHIW badly biases the estimation of the head-count ratio it is ignorable, or nearly so, for the estimation of the transition probabilities hence for our test for TSD.

6. Testing for TSD: results

As for the empirical analysis of TSD, we move from the following preliminary definitions:

5 In fact, for the ignorability of attrition to our test it would be enough to show that time in the survey is unrelated with the parameter of dependence of the transition matrix. To keep the exposition simple we omit this discussion.
(a) We make use of the OECD modified equivalence scale weighting 1 the first adult, 0.5 each additional member of the households at least 14 years old, 0.3 each member younger than 14;

(b) We set the poverty line in the calendar year 1995 at 60% of the median equivalent income in that year. Then we derive the poverty line for the other years deflating the 1995 poverty line by means of the consumer price index.

As a robustness check, we replicate our analysis making use of two alternative poverty lines set at 50% and 70%, respectively, of the median equivalent income.

Main results are summarised in Tab. 3. Our IV test robust to heteroschedastic transitory shocks as well as to the presence of permanent shocks does not provide any evidence pointing to the existence of TSD.

Tab. 3. Testing the hypothesis of no true state dependence under alternative models (model (14) vs model (17)) and under alternative poverty lines (number of di households/years = 7,397)

<table>
<thead>
<tr>
<th>Poverty line</th>
<th>Poverty line set at 60% of the median</th>
<th>Poverty line set at 50% of the median</th>
<th>Poverty line set at 70% of the median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model (17)</td>
<td>(t = 0.2869)</td>
<td>(t = -2.1633)</td>
<td>(t = 1.1843)</td>
</tr>
<tr>
<td>(left-tail t-test)</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
</tr>
<tr>
<td>Model (14)</td>
<td>(t = -6.2611^{***})</td>
<td>(t = -6.6376^{***})</td>
<td>(t = -6.8000^{***})</td>
</tr>
<tr>
<td>(left-tail t-test)</td>
<td>(b)</td>
<td>(b)</td>
<td>(b)</td>
</tr>
</tbody>
</table>

\(a \) The test statistic has been obtained by weighting the contribution of each household by the number of its members (at the time period to which the dependent variable refers to).

\(b \): *** significant at level .01.

Using the base poverty line we get a largely insignificant t-statistic (it is as large as 0.2869). Using the alternative poverty lines results do not change (the t-statistics are as large as 2.1633 and 1.1843 in the 50% and in the 70% case, respectively). Note that in the case of the lower poverty line the t-statistic is statistically significant but the sign is the opposite of the one expected under TSD.

Overall we conclude that the dynamics of poverty we observe in Italy over the period 1995-2004 does not feature any TSD.

A final issue worth paying attention is whether by testing for TSD in a conventional manner, i.e. by imposing the textbook model restrictions on unobservables, our conclusions would have been different. Exploiting results presented in section 4 this question is easily answered to at least for the case in which the variance of the transitory shock is restricted to be stationary. Following the discussion on equation (14), in this case the estimate of the coefficient of \(y_{it} \) on \(y_{it-1} \) using \(y_{it-2} \) under the null hypothesis departs from 1 only because of sampling variability whereas under the alternative hypothesis it is systematically lower than 1. In our case it is by far significantly lower than 1 no matter for

\(6 \) The first three observations are lost since we work with a first-differenced model in which the explanatory variable is the dependent variable lagged once and the IV is the dependent variable lagged twice.
the adopted poverty line. That is, by missing to allow for a time-varying variance of the transitory shock we would mistakenly conclude that poverty dynamics features TSD.

7. Concluding remarks

We summarise the results of our analysis of the dynamics of poverty in Italy, 1989-2004, in three statements.

As for the SHIW panel we use, it is plagued by a severe attrition. There is a clear-cut evidence that the measure of the head-count ratio is severely biased by attrition since the longer the household survive in the survey the lower its probability to experience a poverty spell. On the other hand – and crucial to our analysis of true state dependence, attrition does not bias the estimation of the probabilities of transition. Hence it is ignorable with respect to the purpose of testing for true state dependence.

As for the issue we deal with, i.e. whether after controlling for unobserved heterogeneity there is any evidence of true state dependence, moving from the literature on the dynamics of income and consumption we have argued that the dynamics of poverty status based on income is driven by two sources of across household unobserved heterogeneity: i) the household permanent income at a given point in time and ii) the way in which such permanent income evolves over time as shaped by permanent shocks. Once these two sources of unobserved heterogeneity have been properly accounted for we do not find any sign of true state dependence.

If we tested for true state dependence by imposing the stationarity of the transitory shock variance, the typical restriction imposed by textbook type models, we would mistakenly conclude that the dynamics of poverty is driven also by true state dependence.

This result, which turns out robust to alternative definitions of the poverty line, bears implication for the design of anti-poverty policies. Any policy providing income support to households falling below a specified poverty line are not called into question by our results if it is intended as a passive policy aimed to reduce inequalities. Instead, our results imply that it cannot be used as an active policy: an income transfer today to a household below the poverty line today does not improve that household chance to exit poverty tomorrow.

Of course this is not to mean that there is no room for anti-poverty active policies. The point is that such policies should be targeted to remove the individual characteristics – lack of education and skill, poor health, lack of social networks, say – relevant for the household risk to persist in poverty.
References

Heckman, J.J. (1978), ‘Simple statistical models for discrete panel data developed and applied to test the hypothesis of true state dependence against the hypothesis of spurious state dependence’, *Annales de l’INSEE*, 30-31, 227-269.

