Thresholds, News Impact Surfaces and Dynamic Asymmetric Multivariate GARCH

Massimiliano Caporin*
Dipartimento di Scienze Economiche “Marco Fanno”
Università degli Studi di Padova

Michael McAleer
School of Economics and Commerce
University of Western Australia

March 2006

Abstract: DAMGARCH extends the VARMA-GARCH model of Ling and McAleer (2003) by introducing multiple thresholds and time-dependent structure in the asymmetry of the conditional variances. DAMGARCH models the shocks affecting the conditional variances on the basis of an underlying multivariate distribution. It is possible to model explicitly asset-specific shocks and common innovations by partitioning the multivariate density support. This paper presents the model structure, describes the implementation issues, and provides the conditions for the existence of a unique stationary solution, and for consistency and asymptotic normality of the quasi-maximum likelihood estimators. The paper also provides the news impact surface implied by DAMGARCH and an empirical example.

Keywords: multivariate asymmetry, conditional variance, stationarity conditions, asymptotic theory, multivariate news impact curve.

JEL codes: C32, C51, C52

* Corresponding author: Massimiliano Caporin, Dipartimento di Scienze Economiche “Marco Fanno”, Università degli Studi di Padova, Via Del Santo, 33 - 35123 Padova – Italy – tel. +39-049-827-4258 – fax. +39-049-827-4211 – email: massimiliano.caporin@unipd.it
1. Introduction

Starting with the seminal work of Engle (1982) and Bollerslev (1986) for univariate models, and Bollerslev (1990) and Engle and Kroner (1995) for multivariate models, the modeling of conditional variances, covariances and correlations has attracted considerable interest in the risk and volatility literature. Several extensions and generalizations have been suggested for both the univariate and multivariate representations (see, for example, Chou and Kroner (1992), Bollerslev, Engle and Nelson (1994), Li, Ling and McAleer (2003), Bauwens, Laurent and Rombouts (2006) and McAleer (2005)). The proposed models have been applied to different areas, including exchange rate forecasting, stock price volatility prediction, and market risk measurement through Value-at-Risk forecasts.

By comparison with the development of model specifications, the theoretical contributions have been limited. In fact, the conditions for the existence of a unique stationary and ergodic solution, and for the asymptotic theory of the parameter estimates have become available only for a subset of the proposed models (among others, see Bougerol and Pircard (1996) and Ling and McAleer (2002a, b) for univariate GARCH, and Ling and McAleer (2003) for multivariate GARCH). Furthermore, in the multivariate model case, the diagnostic checking of model adequacy is poorly covered in the literature, being restricted to some recent papers considering multivariate extensions of the Ljung-Box test statistic (see Ling and Li, 1997).

One of the most important topics in the financial econometrics literature is the asymmetric behavior of the conditional variances. The basic idea is that negative shocks have a different impact on the conditional variance evolution than do positive shocks of a similar magnitude. This issue was raised by Nelson (1991) in introducing the EGARCH model, and was also considered by Glosten, Jagannathan and Runkle (1993), Rabemananjara and Zakoian (1993) and Zakoian (1994) for the univariate case. For these models, general results apply, including the conditions for stationarity and asymptotic theory for the quasi-maximum likelihood estimates (see Ling and McAleer, 2002a, b). However, restricting attention to only a single asset may be too strict, particularly if the primary goal is the measurement of the risk of an investment or a portfolio. In such cases, we could be interested in analyzing the effects of a shock on a set of assets, with a possible distinction between

---

1 Note that the VARMA-GARCH model proposed by Ling and McAleer (2003) nests some other multivariate GARCH representations, including the CCC model of Bollerslev (1990). However, this class is non-nested with respect to the BEKK and Vech GARCH representations of Engle and Kroner (1995).
asset-specific shocks and market shocks. Besides the possible mean effects, the paper focuses on the variance and covariance effects, monitoring an asset's conditional variance reaction to another asset's specific shock. Alternatively, the effects of an oil price shock on oil price volatility and on the volatilities of the stocks belonging to the auto sector, or the effects of a market shock (that is an unexpected macroeconomic shock) on all the conditional variances might be considered. Furthermore, the effects of a shock will be distinguished based on its sign and size. Note that the possible combination of sign and size may depend on the other asset's sign and size, with increased complexity according to the chosen multivariate framework. A related issue is the so-called ‘leverage’ effect, that is negative shocks should increment conditional variances while positive shocks should induce a reduction of conditional variances. The actual multivariate GARCH models do no include such a possibility.

Information on variance asymmetry could be useful both for portfolio construction (given the relationship of such a shock-propagation mechanism with the asset correlations and their betas), and for market risk measurement. The structures needed to monitor, estimate and use the conditional variance asymmetries should be included in an appropriate multivariate model. An early contribution in this direction was Hoti, Chan and McAleer (2003) who provided a multivariate generalization of the GJR model. However, their approach is limited to a specific distinction between positive and negative shocks, and is based on an extension of the univariate analysis.

The purpose of this paper is to provide a general framework, where both multivariate variance asymmetry and spillover effects are considered. Furthermore, we include time dependence in the asymmetric component of the variances, thereby extending the ideas of Caporin and McAleer (2006). We propose the Dynamic Asymmetric Multivariate GARCH (DAMGARCH) model that allows for time-varying asymmetry with spillover effects, both on the conditional variance of the GARCH structure and on the asymmetric GARCH model. For the DAMGARCH model, we provide the conditions for the existence of a unique stationary and ergodic solution, and conditions for the consistency and asymptotic normality of the Quasi-Maximum Likelihood Estimators (QMLE). As DAMGARCH is a generalization of the DAGARCH model of Caporin and McAleer (2005), it inherits all the properties of DAGARCH, namely the possibility of explaining asymmetry, persistence in asymmetry, and leverage effects.
Finally, we present an empirical analysis to compare a bivariate DAMGARCH model with a simpler CCC specification. The model proposed provides a higher likelihood and relevant insights into the asymmetric dynamics in the DAX and FTSE stock market indices.

The remainder of the paper has the following structure, Section 2 defines the DAMGARCH model and considers three specific issues, namely the definition of thresholds (subsection 2.1), asymptotic properties of the model and of the QMLE (subsection 2.2), and estimation of DAMGARCH (subsection 2.3). In Section 3 we introduce the News Impact Surface and present a simulated example of the possible forms of the function, depending on the relations between the conditional variances. Section 4 presents an empirical analysis of a set of stock market indices in an asset allocation framework, and compares DAMGARCH with the CCC, DCC and OGARCH models. Section 5 gives some concluding comments.

2. DAMGARCH: Multivariate GARCH with Dynamic Asymmetry

In what follows, \( Y_t \) represents an \( n \)-dimensional vector of observable variables. For the moment, GARCH-in-mean effects are not considered, so it is assumed for simplicity that any mean component has been modeled adequately. The primary focus is on the mean residuals under the following equations:

\[
Y_t = E[Y_t | I^{t-1}] + \varepsilon_t,
\]

\[
E[\varepsilon_t | I^{t-1}] = 0,
\]

\[
E[\varepsilon_t \varepsilon_t' | I^{t-1}] = \Sigma_t = D_t R_t D_t
\]

in which \( I^{t-1} \) is the information set available to time \( t-1 \), \( E[Y_t | I^{t-1}] \) is the conditional mean of \( Y_t \), and \( \varepsilon_t \) is the \( n \)-dimensional mean residual vector at time \( t \). Furthermore, the innovations have a conditional mean of zero, and a conditionally time-dependent covariance matrix that can be
decomposed into the contributions of the conditional variances and the conditional correlations. Finally, $D_t$ is a diagonal matrix of conditional volatilities, given by:

$$D_t = \text{diag} \left( \sigma_{t,1}, \sigma_{t,2}, \ldots, \sigma_{t,n} \right),$$

in which $\text{diag}(a)$ is a matrix operator that creates a diagonal matrix from the elements of the vector $a$, and $R_t$ is a (possibly time-dependent) correlation matrix. It is also assumed that the standardized and uncorrelated innovations, $\eta_t = \Gamma_t^{-1} D_t^{-1} \varepsilon_t$, are independent, with $\Gamma_t \Gamma_t' = R_t$. Note that, as distinct from standard practice, $\Gamma_t$, which is a full symmetric matrix, is not obtained by a Cholesky decomposition of the correlation matrix. Finally, let $z_t = D_t^{-1} \varepsilon_t$ denote the standardized innovations, with $R_t$ as the correlations matrix.

Define the vectors of conditional variances and squared innovations as $H_t = \left( \sigma_{t,1}^2, \sigma_{t,2}^2, \ldots, \sigma_{t,n}^2 \right)'$ and $e_t = \left( \varepsilon_{t,1}^2, \varepsilon_{t,2}^2, \ldots, \varepsilon_{t,n}^2 \right)'$, respectively. The following equations define the Dynamic Asymmetric Multivariate GARCH (hereafter DAMGARCH) model:

$$H_t = W + \sum_{i=1}^{r} B_i H_{t-i} + \sum_{j=1}^{r} \tilde{G}_{t-j}, \quad (2)$$

$$\tilde{G}_t = \sum_{j=1}^{l} \left[ A_j + \Psi_j G_{t-1} \right] I_j (\varepsilon_t) \left[ (\varepsilon_t - \tilde{d}_j) \circ (\varepsilon_t - \tilde{d}_j) \right]^4 \quad (3)$$

$$G_t = \sum_{j=1}^{l} \left[ A_j + \Psi_j G_{t-1} \right] I_j (\varepsilon_t), \quad (4)$$

---

2 It is implicitly assumed that the covariance dynamics are a by-product of the conditional variances and dynamic conditional correlations. Therefore, the Vech and BEKK representations (see Engle and Kroner (1995)) are not directly comparable with the model developed in this paper.

3 Independence and zero correlation are equivalent under a multivariate normal distribution, but not otherwise.

4 Note that the following equality holds $(\varepsilon_t - \tilde{d}_j) \circ (\varepsilon_t - \tilde{d}_j) = d g \left( (\varepsilon_t - \tilde{d}_j) (\varepsilon_t - \tilde{d}_j)' \right)$.
where \( B_i, i = 1, 2, \ldots, s \), \( A_j, j = 1, 2, \ldots, l \), \( \Psi_j, j = 1, 2, \ldots, l \), and \( G_i \) are \( n \)-dimensional square matrices, while \( W \) and \( \tilde{G}_j \) are an \( n \)-dimensional vectors. Furthermore, \( l \) is the number of subsets in which the support of the probability density function of \( \varepsilon_i \) has been partitioned (that is, there may be \( l - 1 \) “thresholds”). Finally, \( I_j(\varepsilon_i) \) is a scalar (diagonal matrix) indicator function that verifies if the vector \( \varepsilon_i \) (each \( i \) component of \( \varepsilon_i \)) belongs to subset \( j \) of the joint support (of the marginal support), \( \tilde{d}_j \) is the vector that defines the upper (or lower) bounds of subset \( j \) (we will address below the structure of the subsets, the structure of \( \tilde{d}_j \) and its usefulness), \( \tilde{d}_j = 0 \) or \( \tilde{d}_j = \tilde{d}_j^* \), and \( \odot \) denotes the Hadamard matrix product (that is, the element by element product) while the \( \tilde{d}_j \) are \( n \)-dimensional vectors. Note that the vector \( \tilde{d}_j \) defines the thresholds for the asymmetric components, and that these thresholds are not necessarily explicitly included in the GARCH equation, while they define the partitions in all cases. In the derivation of the asymptotic properties, we will use an alternative representation of the DAMGARCH model, which is given in Appendix A.1.

The indicator function, and therefore the number of thresholds (or number of subsets), can be defined not only on the \( t - 1 \) innovation vectors, but also on a larger number of terms. In fact, it is possible to generalize \( I_j(\varepsilon_i) \) to \( I_j(\varepsilon_i, \varepsilon_{t-1}, \ldots, \varepsilon_{t-m}) \). However, in this case, the number of thresholds (or subsets) may increase significantly. Considering only the sign of the innovation, a single lag leads to \( l = 2 \), while the use of two lags leads to \( l = 4 \), with an exponential increase in the number of partitions.

Put differently, we can generalize equations (3) and (4) by increasing the number of lags for the terms \( G_i \) and \( \tilde{G}_j \). In this case, we can write:

---

5 We include \( \tilde{d}_j \) in order to induce a continuous news impact surface, as we will show below.
6 The term “thresholds” is not appropriate when considering a multivariate density for which the threshold may be a vector with different components, as the marginal density may have different thresholds. In dealing with multivariate densities, reference will instead be made to a partition of the density support that defines some subsets.
7 The function \( I_j(\varepsilon_i) \) assumes the value 1 if the vector \( \varepsilon_i \) belongs to subset \( j \), and 0 otherwise. The structure of the indicator function will be further specified below.
\[ G_t = \sum_{j=1}^l \left\{ \left[ A_j + \Psi_j(L)G_t \right] I_j(\varepsilon_t) \right\}, \quad \text{(5)} \]

\[ \Psi_j(L) = \Psi_{j,1}L + \Psi_{j,2}L^2 + \ldots + \Psi_{j,q}L^q, \]

with an obvious increase in the number of parameter matrices (similarly for \( \tilde{G}_t \)). Section 2.3 considers the estimation problem and includes a discussion of the role of the number of parameters and feasible representations. Finally, we note that \( \tilde{G}_t \) in (3) is measurable with respect to the information set at time \( t \), but it enters equation (2) with at least lag 1.

Note that equation (2) defines the dynamics of the conditional variances on the basis of (i) past conditional variances and (ii) past squared innovations. While the first term represents the ‘standard’ GARCH component, the second term does not explicitly include the ‘standard’ ARCH component. In fact, the representation we choose can be recast with a slightly different structure, showing the asymmetric variance dynamic as an addition to the VARMA-GARCH structure of Ling and McAleer (2003). In fact, in a simple case, assuming \( d_j = 0 \) \( j = 1, 2 \) (that is, where the asymmetric term does not directly depend on the threshold values which allows the omission of \( \tilde{G}_t \)), we can write the ARCH coefficient \( A_t \) explicitly, obtaining

\[ H_t = W + B_t H_{t-1} + (A_t + G_{t-1})\varepsilon_{t-1}, \]

\[ G_t = \sum_{j=1}^l \left\{ \left[ \tilde{A}_j + \tilde{\Psi}_j G_{t-1} \right] I_j(\varepsilon_t) \right\}, \quad \text{(6)} \]

so that we can rewrite the ARCH term as

\[ A_t + G_t = \sum_{j=1}^l \left\{ \left[ A_t + \tilde{A}_j + \tilde{\Psi}_j G_{t-1} \right] I_j(\varepsilon_t) \right\}, \quad \text{(7)} \]

Equation (7) includes the traditional ARCH term but also highlights that a sufficient condition for the identification of both the \( A_1 \) and the \( \tilde{A}_j \) (with \( j = 1, 2, \ldots, l \)) matrices requires that at last one of the \( \tilde{A}_j \) \( j = 1, 2, \ldots, l \) matrices must be set to zero. In this case, the matrices \( \tilde{A}_j \) \( j = 1, 2, \ldots, l \) will define
the differential effects of each partition on the GARCH structure, such that in the representation we propose, they define the global partition effect on the conditional variance evolution.

We can define DAMGARCH as a multivariate GARCH model, in which the time-varying ARCH coefficients depend on the partition to which time t-1 shock vector belongs, namely the \( A_j \) matrices, and on an autoregressive component that drives the persistence in the ARCH coefficients, as parameterized by the \( \Psi_j \) matrices. Caporin and McAleer (2006) provide a detailed discussion of the interpretation of DAGARCH coefficients, which can be generalized directly to the DAMGARCH model.

A deeper discussion of the indicator function is required. We propose two alternative structures, which are defined over the multivariate density of the mean innovation vector, \( \varepsilon_t \), and over the marginal densities of the univariate mean innovations, \( \varepsilon_{it} \), respectively.

Consider the use of the multivariate density. In this case, define \( S \subseteq \mathbb{R}^n \) as the support of the multivariate innovation density, so that:

\[
I_j(\varepsilon_t) = \begin{cases} 
1, & \varepsilon_t \in S_j \\
0, & \text{otherwise},
\end{cases}
\]  

(8)

where \( S_j \) is a subset of \( S \). Furthermore, we have

\[
\bigcup_{j=1}^l S_j = S, \quad S_i \cap S_j = \emptyset, \quad i, j = 1, 2, ..., l, \quad i \neq j.
\]  

(9)

As an example, we may define the following three subsets of \( S \):

\[
S_1 = \{ \varepsilon_t : \varepsilon_{it} < \overline{d}_L, \; i = 1, 2, ..., n \},
\]

\[
S_2 = S - S_1 - S_3.
\]

\[
S_3 = \{ \varepsilon_t : \varepsilon_{it} > \overline{d}_U, \; i = 1, 2, ..., n \},
\]  

(10)
In this example, assuming that $\bar{d}_L$ is a small negative number and $\bar{d}_U$ is a large positive number, the partition distinguishes extreme events from the remaining elements of $S$.

Put differently, we may define the thresholds over the marginal densities of the innovations. In this case, we may define the $I_j(\varepsilon_i)$ function as a diagonal matrix of dimension $n$, with $I_j(\varepsilon_i)$ on the main diagonal. In turn, $I_j(\varepsilon_i)$ is the indicator function for the inclusion of $\varepsilon_i$ in the $j$-th subset defined over the probability density support of $\varepsilon_i$. The $I_j(\varepsilon_i)$ indicator function is the univariate counterpart of equation (8), namely:

$$I_j(\varepsilon_i) = \begin{cases} 1, & \varepsilon_i < \bar{d}_{i,j}, \quad j = 1,2,...,k \\ 0, & \text{otherwise} \end{cases}$$  \hspace{1cm} (11.a)$$

$$I_j(\varepsilon_i) = \begin{cases} 1, & \varepsilon_i > \bar{d}_{i,j-1}, \quad j = k+1,...,l \\ 0, & \text{otherwise} \end{cases}$$  \hspace{1cm} (11.b)$$

if $\bar{d}_j = \bar{d}_j$, and if $\bar{d}_j = 0$:

$$I_j(\varepsilon_i) = \begin{cases} 1, & \bar{d}_{i,j-1} < \varepsilon_i \leq \bar{d}_{i,j}, \quad j = 1,2,...,l \\ 0, & \text{otherwise} \end{cases}$$  \hspace{1cm} (11.b)$$

where the subset is expressed as a segment on the support of the probability density function of $\varepsilon_i$.

Furthermore: for $j=1$ (that is, the first subset), the condition in (11a,b) is $\varepsilon_i \leq \bar{d}_{i,1}$, while for $j=l$ (that is, the last subset), the condition becomes $\varepsilon_i > \bar{d}_{i,l-1}$; $\bar{d}_{i,1} < ... < \bar{d}_{i,k-1} < 0 < \bar{d}_{i,k+1} < ... < \bar{d}_{i,l-1}$, that is, the $k$-th threshold is equal to zero for all variables. The last assumption is imposed in order to simplify the model structure. Finally, the indicator function distinguishes positive and negative values in order to induce continuity in the news impact surface, which will be defined below.

Note that the threshold stability (apart from the zero threshold) over different components of the innovations was not imposed in (11). In the following section, we will show that the indicator function defined in (8) is more general that the one defined in (11), which represents a special case.
Furthermore, we will show that any representation of the indicator function that follows (11) can be re-cast in the form (8) by defining the partitions of \( e_i \) density function support appropriately.

If we follow (11) in defining the indicator functions, then the elements of \( \overline{d}_j \) may be different over the variables and are defined accordingly to the structure of \( I_j(e_{i,j}) \), namely \( \overline{d}_j = \{\overline{d}_{j,1},...,\overline{d}_{j,l}\} \) for \( j = 1,...,k-1 \), \( \overline{d}_j = \{\overline{d}_{j-1,1},...,\overline{d}_{j-1,l}\} \) for \( j = k+2,...,l \), and \( \overline{d}_j = 0_{n \times 1} \) for \( j = k,k+1 \). Under (8), the definition of \( \overline{d}_j \) depends on the relations used to define the \( S_j \) subsets. In the example in (10), we have \( \overline{d}_1 = \overline{d}_U i_n \), \( \overline{d}_2 = \overline{d}_I i_n \) and \( \overline{d}_3 = 0_n \), where \( i_n \) is an n-dimensional vector of ones and \( 0_n \) is an n-dimensional vector of zeros. However, note that the identification of the \( \overline{d}_j \) elements may be more complex under (8) than in (11), as will be shown below. Finally, note that the indicator function defined on the joint probability support can be represented in matrix form (instead of the scalar case previously used) by simply replacing one with an identity matrix.

The development of the DAMGARCH model is similar in spirit to Hoti, Chan and McAleer (2002), Ling and McAleer (2003), and McAleer, Chan and Marinova (2003). In fact, assuming a constant correlation matrix, and imposing the condition that \( \overline{\alpha}_{t-j} = \alpha_I e_{t-j} \) (an \( n \)-dimensional square parameter matrix that is not influenced by asymmetric behavior) yields the VARMA-GARCH model of Ling and McAleer (2003). Moreover, the GARCC model proposed in McAleer, Chan and Hoti (2003) could be obtained assuming a time-dependent structure for the conditional correlation matrix, again under the restriction \( \overline{\alpha}_{t-j} = \alpha_I e_{t-j} \).

A related development was used in Hoti, Chan and McAleer (2002) for the introduction of asymmetric conditional variance in the multivariate GARCH framework. In this case, the appropriate matrix is given by:

\[
\tilde{\alpha}_{t-j} = \left[ \alpha_I + \hat{A}_I e_{t-j} \right] e_{t-j},
\]

in addition, the matrix indicator function is defined as in (11), with a single threshold set to zero for all \( e_{i,j} \) and with the explicit inclusion of the ARCH parameter matrix. This model is also the multivariate counterpart of the GJR model of Glosten, Jagannathan and Runkle (1992). Its
representation using a partition over the support of $\varepsilon$, includes $2^n$ subsets associated with all the possible combinations of positive and negative values in the elements of $\varepsilon$.

As the DAMGARCH model can nest all the previous cases, it follows that the CCC model of Bollerslev (1990), the DCC model of Engle (2002), and the VCC model of Tse and Tsui (2002), may be also considered as special cases of DAMGARCH. The CCC model is obtained by setting $\tilde{G}_{t-j} = A_j \varepsilon_{t-j}$, assuming that the matrices $A_j$ and $B_j$ are diagonal and with a constant correlation matrix.

The DAMGARCH model extends current multivariate representations of GARCH by introducing multiple thresholds and time-dependent asymmetry. However, DAMGARCH has a similar limitation of the standard multivariate representation, namely the problem of (high) dimensionality. In the full DAMGARCH representation of equations (1), (2), (3) and (4), the number of GARCH parameters is equal to $n + n^2(s + 2l)$ (excluding the parameters of the correlation matrix).

In order to resolve this problem, diagonal representations can be used, such as a separate univariate DA-GARCH model for each innovation variance. Diagonality implies that all the parameter matrices are diagonal, while no restrictions are imposed on the thresholds, which could differ according to the variables involved. Furthermore, block structures could be considered, as in Billio, Caporin and Gobbo (2006). In that case, the parameter matrices could be partitioned and restricted on the basis of a particular asset classification.

Finally, we note that the DAMGARCH model has an implicit Self Exciting Threshold VAR representation (see Tsay (1998), for a definition of threshold VAR models) under the restriction $\tilde{d}_j = 0$. The representation can be derived by generalizing Caporin and McAleer (2004).

2.1. Defining Thresholds and Model specifications

As given in Caporin and McAleer (2004), the use of multiple thresholds with time-varying conditional variances may create problems in the definition of thresholds. In fact, if the thresholds are designed to identify the queues of the innovation density, they must be defined over the
standardized innovations, as the thresholds should adapt to movements in the conditional variances. Consider a simple example in which a time series follows a GARCH(1,1) process, but without any mean dynamics. If we focus on the upper \( \alpha \)-quantile of the mean distribution, this quantile is a function of the conditional variance and of the quantile of the standardized innovation density. Thus, in univariate representations, thresholds have to be defined over the standardized innovation, either by fixing a set of values or a set of percentiles a priori.

Continuing with this example, assume that the lowest threshold for mean innovations, \( \varepsilon_i \), is fixed at \( d_L \), so that the indicator function for this case is \( I(\varepsilon_i < d_L) = 1(\varepsilon_i < d_L) \). The probability associated with this indicator function gives:

\[
P(\varepsilon_i < d_L) = P(z_t \sigma_t^i < d_L) = P(\sigma_t^{-1} z_t < d_L) = F(\sigma_t^{-1} d_L)
\]

where \( F(.) \) is the cumulative density of the standardized innovations. We note that the probabilities are functions of the conditional variance. Therefore, fixing a value for \( d_L \) is not equivalent to defining a quantile on the mean innovation probability density function. The correct formulation should consider fixing a threshold over the standardized innovation density (see Caporin and McAleer (2004) for further details).

A similar structure is needed for multivariate representations, as thresholds must then be defined over standardized innovations. However, a further difficulty arises with regard to the definition of thresholds according to the joint or marginal densities. The two approaches are equivalent if and only if there is zero correlation among the variables, and a parametric restriction is imposed (this will be clarified below). For this reason, thresholds should be defined over the standardized and uncorrelated innovations, that is, on the innovations defined as \( \eta_t = \Gamma_i^{-1} D_{ij} \varepsilon_t \), where \( \Gamma_i^{-1} \) is the output from a Cholesky decomposition of the \( R_i \) correlation matrix. Thresholds defined over the mean innovations will be time dependent, such that:

\[
P(\varepsilon_t < d_j) = P(D_{ij} \varepsilon_t, \eta_t < d_j) = P(\eta_t < \Gamma_i^{-1} D_{ij} d_j) = F(\Gamma_i^{-1} D_{ij} d_j)
\]

where \( F(.) \) is the cumulative density of the standardized innovations.
where $\bar{d}_j$ is the vector defining the $j$-th thresholds, and $F(.)$ is the multivariate cumulative density of the $\eta_i$ innovations. The last equality shows that these probabilities are time varying since they are a function of the time-varying conditional variances and correlations. We suggest that the thresholds be defined over the $\eta_i$, and refer to them as $\bar{d}_j(\eta_i)$. These thresholds are such that:

$$P(\varepsilon_i < D_i \Gamma, \bar{d}_j(\eta_i)) = P(D_i \Gamma, \eta_i < D_i \Gamma, \bar{d}_j(\eta_i)) = P(\eta_i < \bar{d}_j(\eta_i)) = F(\bar{d}_j(\eta_i))$$

(14)

Equation (14) ensures the following relation:

$$P(\eta_i < \bar{d}_j(\eta_i)) = \prod_{i=1}^n P(\eta_i < \bar{d}_i, j(\eta_i)) = \prod_{i=1}^n F_i(\bar{d}_{i, j}(\eta_i)), \quad j = 1, 2, ..., l,$n

(15)

which arises from the independence among the standardized and uncorrelated innovations.

In the following, it is assumed that the thresholds are fixed over the probability density function of the $\eta_i$. In this case, we can either fix a priori the threshold values or a set of quantiles. Furthermore, the term ‘thresholds’ will be used only with respect to the marginal densities, while the term ‘support partitions’ will be used with respect to the joint density.

Thresholds and partitions can be defined as follows. Consider first the definition of thresholds over marginal densities. Assume that the thresholds are fixed over the components of $\eta_i$. Finally, define $F(.)$ as the joint cumulative density, and $F_i(.)$, $i = 1, 2, ..., n$, as the marginal cumulative densities of the $\eta_i$. It follows that:

$$I_j(\varepsilon_{ij}) = \begin{cases} 1, & \left[D_i \Gamma, \bar{d}_{j-1}\right] < \varepsilon_{ij} \leq \left[D_i \Gamma, \bar{d}_j\right], \\ 0, & \text{otherwise} \end{cases}, \quad j = 1, 2, ..., l$$

(16)

where $\bar{d}_j$ is the vector of thresholds defined over the $\eta_i$ innovations (the dependence on the $\eta_i$ has been suppressed in order to simplify notation – from this point onward, it is assumed that the thresholds $\bar{d}_j$ refer to the $\eta_i$ innovations, unless differently specified). The thresholds $\bar{d}_j$ can be
fixed a priori or determined by a quantile relation, $\vec{a}_j = F_t^{-1}(\alpha)^8$. Finally, the condition in equation (16) is based on the elements of a time-dependent threshold vector, so that the indicator matrix function is given by $I_j(\epsilon_i) = \text{diag}(I_j(\epsilon_{i,1}), I_j(\epsilon_{i,2}), ..., I_j(\epsilon_{i,n}))$. Finally, for $j=1$, the condition is $\epsilon_{i,t} \leq \left[ D_t \Gamma_t \vec{a}_j \right]_{i}$, while for $j=l$, the condition is $\epsilon_{i,t} > \left[ D_t \Gamma_t \vec{a}_j \right]_{i}$.

Put differently, the partition over the joint density of $\eta_i$ is defined as:

$$I_j(\epsilon_i) = \begin{cases} 1, & D_t \Gamma_t \vec{a}_{j-1} < \epsilon_i \leq D_t \Gamma_t \vec{a}_j, \quad j = 1, 2, ..., l \\ 0, & \text{otherwise} \end{cases}$$  (17)

where the condition is satisfied if and only if the vector $\epsilon_i$ is included in the partition of the joint probability support$^9$. Specifically, equation (17) is equivalent to equation (7), as we can write the subset as:

$$S_j = \left\{ \epsilon_i : \left[ D_t \Gamma_t \vec{a}_{j-1} \right]_{i} < \epsilon_{i,t} \leq \left[ D_t \Gamma_t \vec{a}_j \right]_{i}, \quad i = 1, 2, ..., n \right\}, \quad j = 1, 2, ..., l. \quad \text{(18)}$$

Note that equation (16) is always included in (17), while the reverse in not always true. Consider a bivariate example to illustrate the point. The following figure represents a partition that can be obtained using either the marginal or the joint threshold definition (specifically, a single threshold that is set to zero):

[Insert here Figure 1]

For the marginal threshold case, we have $l = 2$, and a single threshold that is set equal to zero. For the joint partition, we have $l = 4$, with each subset identifying a quadrant of the Cartesian plane. However, Figure 2 represents a support partition which is defined under the joint probability, but which cannot be obtained using the marginal threshold definition.

---

8 Note that the standardised innovations are also uncorrelated, so that the thresholds and the quantiles may be defined over either the marginal or the joint distribution function.

9 Note that, given (14), equation (17) is equivalent to $I_j(\eta_i) = \begin{cases} 1, & \vec{a}_{j-1} < \eta_i \leq \vec{a}_j, \quad j = 1, 2, ..., l \\ 0, & \text{otherwise} \end{cases}$.
This partition distinguishes between the cases where both variables are negative and the remaining combinations.

The fact that equations (16) and (17) are equivalent does not mean that the models defined over the joint or the marginal thresholds are also equivalent. In fact, the representation (17) over the joint support is associated with a more flexible model. In the case of the marginal thresholds, it follows that:

\[ G_t = [A_t + \Psi_t G_{t-1}] I_t(\varepsilon_t) + [A_t + \Psi_t G_{t-1}] I_t(\varepsilon_t), \]  

(19)

whereas over the joint support, it follows that:

\[ G_t = \sum_{j=1}^{4} [\tilde{A}_j + \tilde{\Psi}_j G_{t-1}] \tilde{I}_j(\varepsilon_t). \]  

(20)

The two representations are based on the same joint support partition. However, the second representation is more flexible since it allows a different reaction for the point of the four subsets of the Cartesian plane. The two equations are equivalent under the following parametric restrictions: let \( x \) be the first component and \( y \) the second, such that \( j=1 \) identifies the subset with both components negative, \( j=4 \) identifies the subset with both components positive, \( j=2 \) defines the subset with positive \( x \) and negative \( y \), and \( j=3 \) defines the subset with negative \( x \) and positive \( y \). It follows that (19) and (20) are equivalent if:

\[
\begin{align*}
\tilde{A}_2 &= \begin{bmatrix} \tilde{A}_2 \end{bmatrix}_{,1} \begin{bmatrix} \tilde{A}_1 \end{bmatrix}_{,2}, & \tilde{\Psi}_2 &= \begin{bmatrix} \tilde{\Psi}_4 \end{bmatrix}_{,1} \begin{bmatrix} \tilde{\Psi}_1 \end{bmatrix}_{,2}, \\
\tilde{A}_4 &= \begin{bmatrix} \tilde{A}_4 \end{bmatrix}_{,1} \begin{bmatrix} \tilde{A}_1 \end{bmatrix}_{,2}, & \tilde{\Psi}_3 &= \begin{bmatrix} \tilde{\Psi}_1 \end{bmatrix}_{,1} \begin{bmatrix} \tilde{\Psi}_4 \end{bmatrix}_{,2}.
\end{align*}
\]  

(21)

where “.,1” denotes the first column of a matrix. Appendix A.2 includes two additional examples on partitions defined over the joint support.
2.2. Stationarity and Asymptotic Theory

In this paper, we focus on the variance model structure. The inclusion of ARMA mean components can be obtained using the results in Hoti, Chan and McAleer (2002). Furthermore, we assume a constant correlation matrix $R$, so that the extension to a time dependent correlation can be obtained as an extension of Hoti, Chan, and McAleer (2003).

**Assumption 1**: $E\left[Y_t \mid I_{t-1}\right] = 0$.

As a direct consequence of Assumption 1, the mean residuals are observable.

**Assumption 2**: The innovations $z_t = \Gamma_t^{-1} D_t e_t$ are independently and identically distributed. The thresholds are defined over the $\eta_t$.

Under Assumption 2, the indicator functions defining the support partition can be defined over either the mean residuals or the innovations $\eta_t$.

**Assumption 3**: $R$ is a positive definite symmetric matrix, with a positive lower bound over the parameter space $\Theta$, all elements of $B_i$ and $E\left[G_{t,i}^i \tilde{z}_{t-i}\right]$ are non-negative; $W$ has elements with positive lower and upper bound over $\Theta$; all the roots of $I - \sum_{i=1}^{r} E\left[G_{t,i}^i \tilde{z}_{t-i}\right] \lambda_i - \sum_{i=1}^{s} B_i \lambda_i = 0$ are outside the unit circle, where $G_{t,i}$ and $\tilde{z}_{t-i}$ are defined below.

**Assumption 4**: $I - \sum_{i=1}^{r} E\left[G_{t,i}^i \tilde{z}_{t-i}\right] \lambda_i - \sum_{i=1}^{s} B_i \lambda_i$ are left coprime, and satisfy other identifiability conditions given in Jeantheau (1998) (conditions are reported in the proof to Theorem 3).

**Theorem 1**: Under assumptions (1), (2), (3) and (4) the DAMGARCH model admits a unique second order stationary solution $\tilde{H}_t$ measurable with respect to the information set $I_{t-1}$; $I_{t-1}$ is a $\sigma$-field generated by the innovations $\tilde{\eta}_t$. The solution $\tilde{H}_t$ has the following causal expansion:
\[
H_t = W + \sum_{j=1}^{\infty} M' \left( \prod_{i=1}^{j} A_{t-i+1} \right) \xi_{t-j}
\]

\[
M' = \begin{bmatrix}
0_{n \times (r+1)} & I_n & 0_{n \times (s-1) \times m}
\end{bmatrix}
\]

\[
A_i = \begin{bmatrix}
\tilde{z}_r G_{r,1} & \ldots & \tilde{z}_r G_{r,r} & \tilde{z}_r B_1 & \ldots & \tilde{z}_r B_s \\
0_{3n \times (n+3n)} & I_{(n+3n)(r-1)} & 0_{(n+3n)(s-1)}} & 0_{3n \times ns}
\end{bmatrix}
\]

\[
\xi_t = \begin{bmatrix}
\tilde{z}_r W : (I_1 \otimes \tilde{z}_r) \{ (I_1 \otimes \tilde{z}_r) : 0 \}_{(n+3n)(r-1) \times 1}
\end{bmatrix}
\]

\[
e_t = d_{g} (e_i e_i') \quad e_{i,j} = d_{g} \left( \bar{d}_j (e_i) \bar{d}_j (e_i)' \right)
\]

\[
\tilde{z}_{i,j} = -d_{g} \left( e_i \bar{d}_j (e_i)' \right) \quad \tilde{z}_{i,j} = -d_{g} \left( d_j (e_i) e_i' \right)
\]

\[
G_{i} = \left( [A_1 + \Psi_1 G_{i-1}] I_r (e_i) \right) \left( [A_2 + \Psi_2 G_{i-1}] I_r (e_i) \right) \ldots \left( [A_t + \Psi_t G_{i-1}] I_r (e_i) \right) \left( I_1 \otimes I_n \right) \left( I_1 \otimes \left( \bar{z}_i \otimes I_n \right) \right)
\]

\[
\tilde{z}_i = d_{g} \left( \tilde{z}_i \tilde{z}_i' \right), \quad E[\tilde{z}_i] = I_n, \quad \tilde{z}_i = D^{-1}_t e_i, \quad \text{and} \quad D_t = \text{diag} \left( H_i^{1/2} \right)
\]
We assume the coefficients are estimated by means of Quasi Maximum Likelihood, following Bollerslev and Wooldridge (1992). A deeper discussion on the DAMGARCH estimation and the relevant implementation issues is included in section 2.3. In order to prove the consistency of QML estimates, we introduce the following assumption on logarithmic moments, as in Jeantheau (1998).

**Assumption 5:** for any \( \theta \in \Theta \) we have \( E_\theta \left[ \log \left( |\Sigma_t| \right) \right] < 0 \)

Then, we can derive consistency and asymptotic normality:

**Theorem 3:** define \( \hat{\theta} \) as the quasi-maximum likelihood estimates of DAMGARCH; under the conditions given by Jeantheau (1998) and reported below, we have \( \hat{\theta} \xrightarrow{p} \theta \).

**Proof:** consistency is obtained by verifying the conditions given in Jeantheau (1998), namely

1. the parameter space \( \Theta \) is compact;
2. for any \( \theta \in \Theta \) the model admits a unique strictly stationary and ergodic solution
3. there exists a deterministic constant \( k \) such that \( \forall t \) and \( \forall \theta \in \Theta \), \( |\Sigma_t| > k \)
4. model identifiability
5. \( \Sigma_t \) is a continuous function of the parameter vector \( \theta_0 \)
6. \( E_\theta \left[ \log |\Sigma_t| \right] < 0 \ \forall \ \theta \in \Theta \)

Note that the determinant of the conditional variance-covariance matrix can be decomposed using equation (1) into \( |\Sigma_t| = |D_t| |R| |D_t| = |D_t^2| |R| \), where we used also the assumption of constant correlation matrix. Furthermore, by Assumption 3, \( D_t \) is strictly positive and then there exists a constant \( k_1 \) such that \( |D_t^2| > k_1 \ \forall t \). In addition, again using Assumption 3, there exists a second constant \( k_2 \) such that \( |R| > k_2 \). Then we can define a third constant \( k = k_1 k_2 \) such that \( |\Sigma_t| > k \ \forall t \) and \( \forall \theta \in \Theta \), where \( \Theta \) is a compact subspace of an Euclidean space; this prove conditions i) and iii). Theorem 1 ensures the existence of a unique strictly stationary and ergodic solution to DAMGARCH, verifying condition (ii). Assumption 4 deals with condition (iv), ensuring identifiability, while Assumption 5 imposes the log-moment condition (vi). Finally, under Assumption 4, it is evident that the conditional variances are a continuous function of the parameter set, proving condition v).
Theorem 4: given the consistency of QMLE for DAMGARCH, under conditions 4.i), 4.ii) and 4.iii) we have \( \sqrt{n} \left( \hat{\theta} - \theta \right) \xrightarrow{L} N \left( 0, \Sigma^{-1} \Omega^{-1} \right) \).

4.i) \( \frac{\partial^2 L}{\partial \theta \partial \theta'} \) exists and is continuous in an open and convex neighbor of \( \theta \)

4.ii) \( n^{-1} \left[ \frac{\partial^2 L}{\partial \theta \partial \theta'} \right] \bigg|_{\hat{\theta}} \) converges in probability to a finite non-singular variance-covariance matrix

\[
\Sigma_0 = E \left[ n^{-1} \left[ \frac{\partial^2 L}{\partial \theta \partial \theta'} \right] \bigg|_{\hat{\theta}} \right] \text{ for any sequence } \hat{\theta} \text{ such that } \hat{\theta} \xrightarrow{p} \theta
\]

4.iii) \( n^{-1} \left[ \frac{\partial L}{\partial \theta} \right]_{\hat{\theta}} \) converges in law to a multivariate normal distribution \( N \left( 0, \Omega_0 \right) \) with variance-covariance matrix equal to \( \Omega_0 = \lim E \left[ n^{-1} \left[ \frac{\partial L}{\partial \theta} \right]_{\hat{\theta}} \times \left[ \frac{\partial L}{\partial \theta'} \right]_{\hat{\theta}} \right] \)

Proof: Using the previous results, the proof can be obtained by direct extension of Ling and McAleer (2003). ■

2.3 Estimation

It was mentioned briefly in section 2.1 that the estimation of DAMGARCH could be considered through a quasi-maximum likelihood approach, following Bollerslev and Wooldridge (1992). This means that we can define an approximated likelihood function \( L(\theta_0) \) that depends on the conditional covariance matrix \( L(\theta_0) = \sum_{t=1}^{T} l_t(\theta_0) = \sum_{t=1}^{T} l_t \left( \Sigma, (\theta_0) \right) \). Traditionally, the approximated likelihood function derives from a multivariate normal distribution. In the multivariate GARCH literature, there exists also a two-step estimation approach that considers univariate estimation of the conditional variances and multivariate estimation of the correlation parameters, following Bollerslev (1991) and Engle (2002). It has to be noted that the two-step approach cannot be used with DAMGARCH, given the dependence of the conditional variance dynamic thresholds that are defined over the conditional variances and correlations.
Furthermore, two additional aspects must be considered: the thresholds are not directly observable (except for simple cases, such as zero thresholds) and the standardized and uncorrelated innovation distribution are not known. The model complexity creates several implementation and numerical optimization problems, even with simplified and limited dimension systems. In order to reduce the computational burden, the following iterative approximated estimation procedure is suggested. Note that full estimation can be considered at the cost of increasing computational time and reducing the reliability of the estimates. Furthermore, numerical optimization problems could be reduced by implementing first-order derivatives, which will be considered in future extensions and applications of the current paper.

Recall that the number of variables is denoted by \( n \). Thus, we suggest the following steps:

1) assume that the standardized and uncorrelated residuals are distributed according to a standard normal variables and computes the thresholds \( \tilde{d}_j(\eta_t) \) for \( j=1,2...l \)

2) estimate a standard GARCH model on a univariate basis and save the conditional variances \( \sigma^2_{i,t} \), the standardized residuals \( \tilde{\eta}_{i,t} = \epsilon_{i,t} GARCH_\sigma^{-1} \) for \( i=1,2...n \) and the thresholds \( GARCH_\sigma^{-1} \tilde{d}_j(\eta_t) \) \( j=1,2...l \)

3) estimate univariate DAGARCH using the \( GARCH_\sigma^{-1} \tilde{d}_j(\eta_t) \) thresholds and save the conditional variances \( \sigma^2_{i,t} \) and the standardized residuals \( \tilde{\eta}_{i,t} = \epsilon_{i,t} DAGARCH_\sigma^{-1} \) for \( i=1,2...n \)

4) compute the unconditional correlation matrix (using the sample estimator) on the series and save the correlation matrix \( R_n \), the uncorrelated residuals \( \eta = [\eta_{1,t}; \eta_{2,t}; \cdots; \eta_{n,t}] \) and the thresholds \( DAGARCH_\sigma^{-1} \tilde{d}_j(\eta) \) \( j=1,2...l \) (defined in equation 11)

5) test the distribution assumption of step 1) and, if necessary, update the \( d_j(\eta) \) thresholds

If we assume that the model follows a diagonal specification in the conditional variance dynamics, we can iterate steps 3) to 5) until convergence, using in step 3) the thresholds defined in steps 4) and 5), that is, the thresholds \( DAMGARCH_\sigma^{-1} \tilde{d}_j(\eta) = \Gamma^{-1} D^{-1}_t \tilde{d}_j(\eta) \) \( j=1,2...l \) with the updated \( d_j(\eta) \) component. Alternatively, the algorithm should include also the following steps.
6) Estimate the conditional variance parameters fixing the correlation matrix and, using the thresholds defined in steps 4) and 5), save the conditional variances $\sigma_{i,j}^2$ and the standardized residuals $\tilde{\eta}_{i,j} = \varepsilon_{i,j} \sigma_{i,j}^{-1}$ for $i=1,2,...n$

7) Compute the unconditional correlation matrix (using the sample estimator) on the series and save the correlation matrix $R_n$, the uncorrelated residuals $\eta_j = \left[ \eta_{1,j} \eta_{2,j} ... \eta_{n,j} \right]'$ and the thresholds $d_j (\eta_j) = \Gamma^{-1} D_j^{-1} \tilde{d}_j (\eta_j)$ for $j=1,2,...l$ (defined in equation 11)

8) Test the distribution assumption of step 1) and, if necessary, update the $\tilde{d}_j (\eta_j)$ thresholds

9) Iterate steps 6) to 8) until convergence.

Given the parameter estimates, standard errors could be computed by numerical methods on the full system likelihood (that is, by the joint use of numerical gradient and Hessian computation in a Quasi-Maximum Likelihood approach, following Bollerslev and Wooldridge (1990)). Clearly, the proposed approach is suboptimal, but full systems estimation could be performed only for small-dimensional systems.

At this point, a discussion of a feasible model structure and on the number of parameters is needed. The general model has a very high number of parameters: recall that $n$ is the number of assets, $r$ is the GARCH order, and $s$ the ARCH order; furthermore, $l-1$ is the number of thresholds (that is, we have $l$ components in the asymmetric GARCH structure) and $q$ is the order of the threshold function $G_t$. Therefore, the total number of parameters is: $n$ for the conditional variance constants, $n2 \times s$ for the GARCH component, $n2 \times (1+q) \times l$ for the threshold component, and $n \times (n-1)/2$ for the correlation matrix, namely $n2 \times (s+1+l \times q) + n \times (n-1)/2$. Clearly, this is an intractable number of parameters, even for small dimensional systems. However, several restrictions could be considered: the use of diagonal parameter matrices (at the cost of excluding any spillover effects among the conditional variances, but allowing for an easier multi-step estimation procedure); introducing restrictions on the asymmetry dynamic (acting on the term $G_t$); fixing the number of thresholds at a small value, such as one ($l=2$) for positive-negative or, as an example, to three ($l=4$) for distinguishing among large and small positive (negative) values; or a combination of all of the above restrictions. Furthermore, we can expect that the standard GARCH orders should be small, possibly equal to 1; similarly, we may expect the threshold dynamics order to be small. Finally, note that if the model
follows a pure ARCH dynamic (restricting $s$ to zero), two-step estimation procedures are directly available.

Table 1 reports some examples, restricting to three the threshold number, imposing the standard GARCH orders, and fixing the asymmetry dynamics order to one. The number of DAMGARCH parameters is also compared with several alternative models.

[Insert here Table 1]

3. The News Impact Surface implied by DAMGARCH

Engle and Ng (1993) introduced the news impact curve, a useful tool for evaluating the effects of news on the conditional variances. The different reactions of the conditional variances to positive and negative shocks motivated the GJR and EGARCH representations of Glosten et. al. (1993) and Nelson (1991), respectively. Both models permit a richer parameterization of the news impact curve as compared with the standard GARCH model. As an extension, Caporin and McAleer (2004) provided the news impact curve in the presence of multiple thresholds and dynamic asymmetry in conditional volatility.

This section provides a multivariate extension of the news impact curve for the DAMGARCH model. Without loss of generality, consider a simple model with two variables, three thresholds and all other orders restricted to one.

These values lead to the following DAMGARCH representation:

$$H_t = W + B_i H_{t-1} + \tilde{G}_{t-1},$$  \hspace{1cm} (29)

$$\tilde{G}_t = \sum_{j=1}^{4} \left[ A_j + \Psi_j G_{t-1} \right] I_j (\varepsilon_i) \left[ (\varepsilon_i - \bar{d}_j) \cap (\varepsilon_i - \bar{d}_j) \right],$$  \hspace{1cm} (30)

$$G_t = \sum_{j=1}^{4} \left[ A_j + \Psi_j G_{t-1} \right] I_j (\varepsilon_i).$$  \hspace{1cm} (31)
The parameter matrices have been set to the following specification

\[
A_1 = \begin{bmatrix} 0.15 & 0 \\ 0.20 & 0.10 \end{bmatrix} \quad A_2 = \begin{bmatrix} 0.15 & 0 \\ 0.10 & 0.10 \end{bmatrix} \quad A_3 = \begin{bmatrix} 0.15 & 0 \\ 0.10 & 0.10 \end{bmatrix} \quad A_4 = \begin{bmatrix} 0.15 & 0 \\ 0.20 & 0.10 \end{bmatrix}
\]

(32)

\[
W = \begin{bmatrix} 0.01 \\ 0.01 \end{bmatrix} \quad B_1 = \begin{bmatrix} 0.85 & 0 \\ 0.07 & 0.78 \end{bmatrix} \quad R = \begin{bmatrix} 1 \\ 0.7 \\ 1 \end{bmatrix}
\]

Note that the first asset conditional variance does not depend on the second asset conditional variance, but the two are correlated. Put differently, the second asset strongly depends on shocks arising from the first asset, both in the GARCH term and in the asymmetric terms.

Traditionally, the news impact curve represents the variance movements in response to an idiosyncratic shock, assuming that all past variances are evaluated at the unconditional variance implied by the model. For the simple GARCH(1,1), this implies:

\[
NIC = \omega + \beta \sigma^2 + \alpha \sigma^2 z_i^2,
\]

(33)

where \( z_i^2 \) represents the idiosyncratic component. In the DAMGARCH model, assuming that the correlations are constant, the news impact surface is given by

\[
NIS = W + BE[H] + \sum_{j=1}^{\eta} \left( A_j + \Psi_j E[G] \right) \text{diag} \left( d_g \left( \Gamma \left( \eta_j - d_j \right) \left( \eta_j - d_j \right)' \Gamma' \right) \right) E[H]
\]

(34)

where the expectations are defined in the appendix.

As an example, we report the News Impact Surfaces for the two asset example for two different cases: the first with the coefficients reported in (A), while the second with the correlation set to zero.

[Insert here Figures from 3 to 7]
Note that when the assets are not correlated and there is no spillover or asymmetric behavior, the NIS collapses to the traditional News Impact Curve, as shown for the first asset in Figure 5. Put differently, even if the shocks are not correlated but if there are asymmetric spillover effects, the NIS depends on both assets' shocks with 'symmetric' behavior. When we also introduce the correlation, the NIS changes in both cases. For the first asset, the correlation introduces dependence on the other asset's innovations, while for the second asset the correlation increases the NIS level and introduces asymmetric behavior.

4. Dynamic Asymmetric Effect: an empirical example

This section focuses on the estimation of the DAMGARCH model and its comparison with a simpler CCC model. We consider the daily closing levels of the DAX and FTSE 100 indices. The sample considered covers the period from 1998 to 2004. The two markets are highly correlated and may show strong dependence in the extreme returns. Therefore, we may expect an NIS that is similar to that reported in the previous sections.

Table 3 reports the estimated coefficients of the DAMGARCH model, while Table 2 reports the CCC estimates. Furthermore, Figures 8 and 9 report the conditional variances estimated by the two models, while Figures 10, 11, 12 and 13 report the NISs for the DAX and the FTSE, together with their isometric representation, respectively.

For the bivariate system, a basic DAMGARCH model with three thresholds was estimated for both series. The thresholds were fixed at zero at the upper and lower 5% tails under a standardized normal distribution for the uncorrelated and variance standardized residuals. The thresholds define a partition on the bivariate probability support, which is comprised of 16 subsets, 4 of which are finite. In the following, the matrices are matched with a subscript corresponding to the following order:

1 - large negative values (below the lower threshold);
2 - negative values;
3 - positive values;
4 - large positive values (above the upper threshold).
The CCC model provides persistent conditional variance dynamics, a finding that is confirmed by the elevated values of the B matrix in the DAMGARCH model. The DAMGARCH model provides a significant coefficient in most parameter matrices, with the exception of the A and $\Psi$ matrices associated to negative values.

There is an evident interrelation between the two markets, in particular, for large positive shocks, and the correlation estimated by DAMGARCH is similar to the one given by the CCC model.

Comparing the fitted conditional variances, we note some discrepancies, in particular, during periods of high volatility: the DAMGARCH peaks in the conditional variance seem to anticipate that produced by CCC, an effect that may be due to improved forecasting ability. This empirical result needs further investigation, which is left to future research.

Finally, the log-likelihood provided by the DAMGARCH model is much higher than that of the CCC model. Given there exists a nesting relationship between the two models, a simple likelihood ratio test provides strong evidence in favor of the DAMGARCH model. The test statistic is 175.716 for 32 restrictions, such that the associated p-value is smaller than 1e-20.

[Insert here Figures from 8 to 12 and Tables 2 and 3]

5. Concluding Remarks

This paper introduced a new multivariate GARCH model, DAMGARCH, which generalized the VARMAGARCH model of Ling and McAleer (2003) by introducing multivariate thresholds and time-dependent asymmetry in the ARCH component of the model. As a result, the proposed parameterization is able to explain variance asymmetry and threshold effects simultaneously with variance spillovers.

Furthermore, we provided the conditions for the existence of a unique stationary solution and, by generalizing the statistical theory in Ling and McAleer (2003), we showed that the quasi-maximum likelihood estimators were consistent and asymptotically distributed as multivariate normal.
In addition, we provided the form of the multivariate news impact curve, which was labelled the news impact surface, whose final purpose was a detailed graphical analysis of the asymmetry and leverage effects.

In an illustrative empirical application, it was shown that the DAMGARCH model outperformed standard models in the estimation of the conditional variances. Moreover, the DAMGARCH model could also be used to detect variance relations within markets.

References


Bougerol, P. and N. Picard (1992), Stationarity of GARCH processes, Journal of Econometrics, 52, 115-127


Ling, S. andM. McAleer, 2002b, Necessary and sufficient moment conditions for the GARCH(r,s,) and asymmetric power GARCH(r,s) models, Econometric Theory 18, 722-729

McAleer, M., F. Chan and S. Hoti (2003), Generalized autoregressive conditional correlation, unpublished paper, School of Economics and Commerce, University of Western Australia.


Appendix A.1 Alternative representation of DAGARCH model

Equations (2) - (4) can be represented in an alternative way using the following:

\[ H_t = W + \sum_{i=1}^{r} B_i H_{t-i} + \sum_{j=1}^{r} G_{t-j}^1 G_{t-j}^2 \]  \hspace{1cm} (A.1.1)

\[ G_{t}^{(coul)} = \left[ \left[ A_1 + \Psi_1 G_{t-1} \right] I_1 (\varepsilon_i) : \left[ A_2 + \Psi_2 G_{t-1} \right] I_2 (\varepsilon_i) \ldots : \left[ A_r + \Psi_r G_{t-1} \right] I_r (\varepsilon_i) \right] \]  \hspace{1cm} (A.1.2)

\[ G_t^2 = \operatorname{dg} \left( (\varepsilon_i - \tilde{d}_i)(\varepsilon_i - \tilde{d}_i)' \right) : \operatorname{dg} \left( (\varepsilon_i - \tilde{d}_2)(\varepsilon_i - \tilde{d}_2)' \right) \ldots : \operatorname{dg} \left( (\varepsilon_i - \tilde{d}_i)(\varepsilon_i - \tilde{d}_i)' \right) \]  \hspace{1cm} (A.1.3)

\[ G_t = G_t^1 (i_r \otimes I_r) \]  \hspace{1cm} (A.1.4)

where : denotes matrix horizontal concatenation and \( \operatorname{dg}(A) \) is a vector comprising the diagonal elements of A.

Appendix A.2 Possible partitions defined over the joint support

The flexibility of the partitions and of the models defined directly over the joint support accommodates particular representations, such as that depicted in Figure 3, which focuses on very extreme events. A natural question that may arise is the identification of common shocks or common components.

[Insert here Figure A.1]

Finally, the partitions defined over the joint probability support may also accommodate non-linear relations between assets. A simple example is the distinction between extreme events of an elliptical multivariate distribution, as depicted in Figure A.1. This may be interesting for cases with constant correlations and thresholds defined over the standardised but correlated innovations.
Appendix A.3: Details on the derivation of the News Impact Surfaces and of the unconditional estimates

Assume $s=1$, $r=1$, and that the indicator function is defined over the marginal densities, so that $I_j(\varepsilon_t)$ is a diagonal matrix. The model representation is given by

$$H_t = W + B_t H_{t-1} + \tilde{G}_{t-1},$$

$$\tilde{G}_{t-1} = \sum_{j=1}^l A_j + \Psi J_{G_{t-2}} I_j(\varepsilon_{t-1}) \Delta \varepsilon_t - \bar{d}_j \varepsilon_{t-1} - \bar{d}_j,$$

$$G_{t-1} = \sum_{j=1}^l A_j + \Psi J_{G_{t-2}} I_j(\varepsilon_{t-1}),$$

where $\text{dg}(A)$ is the vector given by the diagonal of a matrix $A$.

Lemma A.1

Focus of the indicator function referred to subset $j$: $I_j(\varepsilon_t)$. The following equality holds:

$$I_j(\varepsilon_t) = \text{diag}(I_j(\varepsilon_{i,j}), I_j(\varepsilon_{2,j}),..., I_j(\varepsilon_{n,j})) = \text{diag}(I_j(\eta_{i,j}), I_j(\eta_{2,j}),..., I_j(\eta_{n,j})) = I_j(\eta_t).$$

Proof:

for a given $j$ in $1,2,...,l$, and a given $i$ in $1,2,...,k$,

$$I_j(\varepsilon_{i,j}) = I(\bar{d}_{i,j} < \varepsilon_{i,j} < \bar{d}_{i,j} \varepsilon_{i,j}) = I(D_t \Gamma, \bar{d}_{j-1}) < \varepsilon_{i,j} \leq [D_t \Gamma, \bar{d}_{j}]$$

$$= I(D_t \Gamma, \eta_t < D_t \Gamma, \bar{d}_{j})$$

$$= I(\varepsilon_{i,j} < \eta_{i,j} \leq \bar{d}_{i,j}) = I_j(\eta_{i,j}).$$

If the model has a unique stationary solution, we can write

$$E[H_t] = W + B_t E[H_{t-1}] + E[\tilde{G}_{t-1}]$$
As we are interested in the unconditional values, we can write:

\[ E[H] = W + BE[H] + E[\tilde{G}_{t-1}] \]

by exploiting the structure of \( \tilde{G}_{t-1} \) and using Lemma A.1

\[
E[\tilde{G}_{t-1}] = \sum_{j=1}^{l} A_j E[I_j(\varepsilon_{t-1})] dg \left( (\varepsilon_{t-1} - \bar{d}_j(\varepsilon_{t-1}))(\varepsilon_{t-1} - \bar{d}_j'(\varepsilon_{t-1}))' \right) + 
\]

\[
+ \Psi_j E[\tilde{G}_{t-2}I_j(\varepsilon_{t-1})] dg \left( (\varepsilon_{t-1} - \bar{d}_j(\varepsilon_{t-1}))(\varepsilon_{t-1} - \bar{d}_j'(\varepsilon_{t-1}))' \right) \]

\[
= \sum_{j=1}^{l} A_j E[I_j(\eta_{t-1})] dg \left( (\varepsilon_{t-1} - \bar{d}_j(\varepsilon_{t-1}))(\varepsilon_{t-1} - \bar{d}_j'(\varepsilon_{t-1}))' \right) + 
\]

\[
+ \Psi_j E[\tilde{G}_{t-2}] E[I_j(\eta_{t-1})] dg \left( (\varepsilon_{t-1} - \bar{d}_j(\varepsilon_{t-1}))(\varepsilon_{t-1} - \bar{d}_j'(\varepsilon_{t-1}))' \right) \]

The unconditional value of the asymmetric term is given by

\[
E[G_t] = \sum_{j=1}^{l} A_j E[I_j(\varepsilon_{t-1})] + \Psi_j E[\tilde{G}_{t-2}I_j(\varepsilon_{t-1})] \]

\[
= \sum_{j=1}^{l} A_j E[I_j(\eta_t)] + \Psi_j E[G_t] E[I_j(\eta_t)] \]

\[
= \left( I - \sum_{j=1}^{l} \Psi_j E[I_j(\eta_t)] \right)^{-1} \left( \sum_{j=1}^{l} A_j E[I_j(\eta_t)] \right) \]

\[
= \left( I - \sum_{j=1}^{l} \Psi_j M_j \right)^{-1} \left( \sum_{j=1}^{l} A_j M_j \right), \]

which is a square matrix, and where \( M_j = E[I_j(\eta_t)] \). Consider then the following equality:

\[
dg \left( (\varepsilon_{t-1} - \bar{d}_j(\varepsilon_{t-1}))(\varepsilon_{t-1} - \bar{d}_j'(\varepsilon_{t-1}))' \right) = dg \left( D_{t-1} \Gamma_{t-1} (\eta_{t-1} - \bar{d}_j)(\eta_{t-1} - \bar{d}_j)' \right) \Gamma_{t-1} D_{t-1} \]

Then, by focusing then on the following expectation:
\[
E \left[ I_j(\eta) dg \left( (\varepsilon_i - \bar{J}_j(\varepsilon_i))(\varepsilon_i - \bar{J}_j(\varepsilon_i))' \right) \right] = E \left[ I_j(\eta) dg \left( D_j \Gamma_j(\eta_i - \bar{J}_j)(\eta_i - \bar{J}_j)' \Gamma'_j D_j \right) \right]
\]

and using the fact that \( I_j(\eta) \) is diagonal, we can write:

\[
= E \left[ dg \left( I_j(\eta_i) D_j \Gamma_j(\eta_i - \bar{J}_j)(\eta_i - \bar{J}_j)' \Gamma'_j D_j \right) \right]
= E \left[ dg \left( D_j \Gamma_j I_j(\eta_i)(\eta_i - \bar{J}_j)(\eta_i - \bar{J}_j)' \Gamma'_j D_j \right) \right].
\]

This expression arises from the fact that the diagonal of the product within the internal parentheses is equivalent to the product of \( I_j(\eta_i) \) with the \( dg(.) \) result given above. Using the convention that

\[
E \left[ dg \left( D_j \Gamma_j I_j(\eta_i)(\eta_i - \bar{J}_j)(\eta_i - \bar{J}_j)' \Gamma'_j D_j \right) \right] =
= dg \left( E[D_j] E[\Gamma_j] E[I_j(\eta_i)(\eta_i - \bar{J}_j)(\eta_i - \bar{J}_j)' \Gamma'_j D_j] \right)
\]

which generalises the result that the expectation of a matrix is the matrix of the expectations, using the law of iterated expectations under the assumption that the conditional variances and conditional correlations depend on the information set at time \( t-1 \).

Thus, defining

\[
N_j = E \left[ I_j(\eta_i)(\eta_i - \bar{J}_j)(\eta_i - \bar{J}_j)' \right]
\]

it follows that:

\[
E \left[ dg \left( D_j \Gamma_j I_j(\eta_i)(\eta_i - \bar{J}_j)(\eta_i - \bar{J}_j)' \Gamma'_j D_j \right) \right] =
= dg \left( E[D_j] E[\Gamma_j] N_j E[\Gamma_j]' E[D_j] \right) = E[H_j] \circ dg \left( E[\Gamma_j] N_j E[\Gamma_j]' \right) =
= dg \left( E[\Gamma_j] N_j E[\Gamma_j]' \right) \circ E[H] = \text{diag} \left( dg \left( \Gamma N_j \Gamma' \right) \right) E[H],
\]
using the diagonality of $D_j$, and replacing the expectations with their unconditional values, namely 

$E[\Gamma_j] = \Gamma$ and $dg(E[D_j]E[D_j]) = dg(E[D,D_j]) = E[H_j] = E[H] \prod$

It should be stressed that the unconditional expectation of the correlation matrix equals the correlation matrix if the matrix is constant, otherwise it has to be computed on the basis of a specified dynamic structure. Collecting the various results, we can then write

$$E[\bar{G}_{t-1}] = \sum_{j=1}^{J} A_j E[I_j(\eta_{t-1})dg((\varepsilon_{t-1} - \bar{d}_j)(\varepsilon_{t-1} - \bar{d}_j)' + \Psi_j E[G_{t-1}]E[I_j(\eta_{t-1})dg((\varepsilon_{t-1} - \bar{d}_j)(\varepsilon_{t-1} - \bar{d}_j)')]

= \sum_{j=1}^{J} A_j diag(dg(\Gamma N_j \Gamma'))E[H] + \Psi_j E[G_{t-1}]E[H]

E[H] = W + BE[H] + \sum_{j=1}^{J} A_j \left[ diag(dg(\Gamma N_j \Gamma'))E[H] \right] + \Psi_j E[G_{t-1}] \left[ diag(dg(\Gamma N_j \Gamma'))E[H] \right]$$

Rearranging the results and substituting the expression of $E[G_{t-1}]$ gives

$$E[H] = \left( I_n - B_1 - \sum_{j=1}^{J} \left[ A_j + \Psi_j E[G_{t-1}] \right] diag(dg(\Gamma N_j \Gamma')) \right)^{-1} W

= \left( I_n - B_1 - \sum_{j=1}^{J} \left[ A_j + \Psi_j \left( I - \sum_{j=1}^{J} \Psi_j M_j \right)^{-1} \sum_{j=1}^{J} A_j M_j \right] \right) \left[ diag(dg(\Gamma N_j \Gamma')) \right]^{-1} W$$

Note that the unconditional value of the correlation matrix should be derived under the appropriate model used to define the dynamic conditional correlation, unless constant conditional correlation is assumed.

The unconditional variance of DAMGARCH is equivalent to

$$\Sigma = DRD$$

and correlation targeting is imposed when the following equalities hold:
\[ R^* = R, \]
\[ W = \left( I_n - B_1 - \sum_{j=1}^l \left( A_j + \Psi_j \left( I - \sum_{j=1}^l \Psi_j M_j \right)^{-1} \left( \sum_{j=1}^l A_j M_j \right) \right) \right) \text{diag} \left( \text{dg} \left( \Gamma^* N \Gamma'' \right) \right) H^* \]

where starred quantities refer to the corresponding sample estimators. Note that this result includes as special cases the VARMA-GARCH, VARMA-AGARCH, CCC and DCC models.

**Appendix A.4 Proof of theorem 1**

Following Ling and McAleer (2003), we first rewrite DAMGARCH in the following form:

\[ X_t = A_t X_{t-1} + \xi_t \]

where

\[ X_t = \begin{bmatrix} e_t, \left\{ e_{t,1} \right\}_{j=1}^1, \left\{ e_{t,2} \right\}_{j=1}^1, \left\{ e_{t,3} \right\}_{j=1}^1, e_{t-1}, \left\{ e_{t-1,1} \right\}_{j=1}^1, \left\{ e_{t-1,2} \right\}_{j=1}^1, \left\{ e_{t-1,3} \right\}_{j=1}^1, \ldots \end{bmatrix} \]

\[ = \begin{bmatrix} e_{t-r+1}, \left\{ e_{t-r+1,1} \right\}_{j=1}^1, \left\{ e_{t-r+1,2} \right\}_{j=1}^1, \left\{ e_{t-r+1,3} \right\}_{j=1}^1, H_{r}, H_{r+1}, \ldots H_{r+s} \end{bmatrix} \]

which has dimension \((n+3nl)r+ns)x1\), and

\[ e_{i,j} = \text{dg} \left( e_i - \overline{d}_j (e_i) (e_i - \overline{d}_j (e_i))' \right) \]
\[ = \text{dg} \left( e_i e'_i + \overline{d}_j (e_i) \overline{d}_j (e_i)' - e_i \overline{d}_j (e_i)' - \overline{d}_j (e_i) e'_i \right) \]
\[ = \text{dg} \left( e_i e'_i + \text{dg} \left( \overline{d}_j (e_i) \overline{d}_j (e_i)' \right) - \text{dg} \left( \overline{d}_j (e_i)' \right) - \text{dg} \left( \overline{d}_j (e_i) e'_i \right) \right) \]
\[ = e_i + e_{i,j} + e_{i,j} + e_{i,j} \]

Furthermore, \( \left\{ e_{i,j} \right\}_{j=1}^l \) stands for the vector of dimension \( nl \) containing the values of \( e_{i,j} \) for all the \( l \) partitions.
Note that we have included the threshold-dependent innovation (in deviation from the threshold) at time \( t \) and the innovation (mean residuals) at time \( t \). For the simple (1,1) model, we have

\[
H_t = W + B_t H_{t-1} + \sum_{j=1}^{t} \left( A_j + \Psi_j G_{t-j} \right) I_j \left( \varepsilon_{t-j} \right) \left( e_{t-1} + e_{t-1,j} + 2 e_{t-1,j} \right),
\]

\[
G_t = \sum_{j=1}^{t} \left( A_j + \Psi_j G_{t-j} \right) I_j \left( \varepsilon_t \right),
\]

which implies a matrix \( A_t \) with the following structure:

\[
A_t = \begin{bmatrix}
\tilde{z}_s G_{t-s} & \ldots & \tilde{z}_s G_{t-r} & \tilde{z}_t B_1 & \ldots & \tilde{z}_t B_z \\
0_{3nl(n+3nl)r} & I_{n+3nl(r-1)} & 0_{(n+3nl)(r-1)3nl} & 0_{3nl\times n} \\
G_{t-1} & \ldots & G_{t-r} & B_1 & \ldots & B_z \\
0_{n(s-1)\times(n+3nl)r} & I_{n(s-1)} & 0_{n(s-1)\times n}
\end{bmatrix}
\]

where

\[
\tilde{z}_t = \text{dg} \left( z_t z_t^T \right), \quad E[\tilde{z}_t] = I_n, \quad z_t = D_t^{-1} \varepsilon_t, \quad \text{and} \quad D_t = \text{diag} \left( H_t^{1/2} \right).
\]

Furthermore,

\[
G_{t-1}^{(nl(n+3nl))] = \left[ \left( A_t + \Psi_t G_{t-1} \right) I_1 \left( \varepsilon_1 \right) : \left( A_2 + \Psi_2 G_{t-1} \right) I_2 \left( \varepsilon_2 \right) \ldots \left( A_t + \Psi_t G_{t-1} \right) I_t \left( \varepsilon_t \right) \right] \left( i_1 \otimes I_n \right) : \left( i^T_1 \otimes I_n \right) \right]
\]

and, finally,

\[
\bar{z}_t = \left[ \tilde{z}_t W : \left( I_t \otimes \tilde{z}_t \right) \left( e_{t,j} \right) \left( e_{t,j} \right)^T : \left( I_{t+1} \otimes \tilde{z}_{t+1} \right) \left( e_{t,j} \right) \left( e_{t,j} \right)^T : \left( I_{t+2} \otimes \tilde{z}_{t+2} \right) \left( e_{t,j} \right) \left( e_{t,j} \right)^T : \ldots : \left( I_{t+3nl} \otimes \tilde{z}_{t+3nl} \right) \left( e_{t,j} \right) \left( e_{t,j} \right)^T : \right]
\]

where \( I_t \otimes \tilde{z}_t \) \left( e_{t,j} \right) \left( e_{t,j} \right)^T means that the first matrix product multiplies the vector \( \left( e_{t,j} \right) \left( e_{t,j} \right)^T \) and : identifies matrix vertical concatenation.
Given these quantities and following Ling and McAleer (2003), we define the quantity

\[ S_{n,s} = \xi_t + \sum_{j=1}^{n} \left( \prod_{i=1}^{j} A_{t-i+1} \right) \xi_{t-j} \]

where \( n=1,2,\ldots \). Denote by \( s_{n,s} \) the element of order \( k \) in the summation included in \( S_{n,s} \). We have then

\[ E[s_{n,s}] = E \left[ e_k' \xi_t + e_k' \left( \prod_{i=1}^{j} A_{t-i+1} \right) \xi_{t-j} \right] \]

where \( e_k \) is a vector conformable with \( s_{n,s} \) comprising zeros and with 1 in position \( k \). Note that the following decomposition holds for the matrix \( A_t \)

\[
A_t = Z_t \tilde{A}_{t-1} = \begin{bmatrix}
\tilde{z} G_{t-1}^1 & \ldots & \tilde{z} G_{t-1}^r & \tilde{z} B_1 & \ldots & \tilde{z} B_s \\
0_{3n(n+3n)r} & I_{n(n+3n)(r-1)} & 0_{(n+3n)(r-1)(n+3n)} & 0_{3n(n+3n)(r-1)n} \\
G_{t-1}^1 & \ldots & G_{t-1}^r & B_1 & \ldots & B_s \\
0_{n(n-1)(n+3n)r} & I_{n(n-1)(r-1)n} & 0_{n(n-1)n(n+3n)} \\
& & & I_{n(n-1)(3n+3n)} & & \\
\tilde{z}_t & 0_{n(n-1)+3n(n+3n)} & I_{n(n-1)+3n(n+3n)} \\
0_{n(n-1)+3n(n+3n)n} & & & I_{n(n-1)+3n(n+3n)}
\end{bmatrix}
\]

where \( \tilde{A}_{t-1} \) depends on the information set at time \( t-1 \), and where \( Z_t \) depends on the information set at time \( t \). Furthermore, consider a simple DAMGARCH model where the lags of the conditional variance dynamics are all restricted to one, which implies that \( \tilde{A}_{t-1} \) depends on information at time \( t-1 \). When increasing any lag length, the following proof must be adapted. Thus, we have

\[ E[s_{n,s}] = E \left[ e_k' \left( \prod_{i=1}^{j} Z_{t-i+1} \tilde{A}_{t-1} \right) \xi_{t-j} \right] = e_k' E[Z_t] \left( \prod_{i=1}^{j} E \left[ \tilde{A}_{t-i} Z_{t-i} \right] \right) E \left[ \tilde{A}_{t-j} \xi_{t-j} \right] = e_k' \Delta_1 \tilde{A} \Delta_2 \]
where we have used the previously introduced decomposition of $A_t$, so the expectations can be split given the dependence of $A_{t-1}$ on time $t-1$ quantities only (when this is not the case, the expectation within the parentheses will involve additional terms), $\Delta_1$ and $\Delta_2$ are two matrices and

\[
\widetilde{A} = \begin{bmatrix}
E\left[ G_{t-1} \tilde{z}_{t-1} \right] & \ldots & E\left[ G_{t-1} \tilde{z}_{t} \right] & B_t & \ldots & B_s \\
0_{nl \times (n+3nl)r} & 0_{nl \times ns} \\
I_{(n+3nl)\times (r-1)} & 0_{(n+3nl)(r-1)\times (n+3nl)} & 0_{(n+3nl)(r-1)\times ns} \\
E\left[ G_{t-1} \tilde{z}_{t-1} \right] & \ldots & E\left[ G_{t-1} \tilde{z}_{t} \right] & B_t & \ldots & B_s \\
0_{n(r-1) \times (n+3nl)r} & I_{n(r-1)} & 0_{n(r-1)\times sn}
\end{bmatrix}.
\]

Then, it can be shown that Assumption 3 ensures the roots of the characteristic polynomial of $\widetilde{A}$ lie inside the unit circle, thereby proving the convergence of $\widetilde{A}^t$, and hence of the whole term. The remainder of the proof follows closely Ling and McAleer (2003).
Figure 1: Multivariate GJR Representation

Figure 2: Partition Defined Over the Joint Support
Figure 3: NIS of the first asset when the correlation is 0.7

Figure 4: NIS of the second asset when the correlation is 0.7
Figure 5: NIS of the first asset when the correlation is 0

Figure 6: NIS of the second asset when the correlation is 0
Figure 7: Isometric representations of the NIS reported in Figures 3 to 6.

Figure 8: DAX conditional variances
Figure 9: FTSE conditional variances

Figure 10: DAX NIS

Figure 11: FTSE NIS
Figure 12: DAX NIS

Figure 13: FTSE NIS

Figure A.1: Extreme Events on a Bivariate Support

Figure A.2: a non-linear support partition
<table>
<thead>
<tr>
<th>DAMGARCH – l=4 – s=1 – r=1 – q=1</th>
<th>2  (1)</th>
<th>3  (3)</th>
<th>4  (6)</th>
<th>5  (10)</th>
<th>10  (45)</th>
<th>20  (190)</th>
<th>100  (4950)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assets number (number of correlations)</td>
<td>36</td>
<td>81</td>
<td>144</td>
<td>225</td>
<td>900</td>
<td>3600</td>
<td>90000</td>
</tr>
<tr>
<td>Full</td>
<td>18</td>
<td>27</td>
<td>36</td>
<td>45</td>
<td>90</td>
<td>180</td>
<td>900</td>
</tr>
<tr>
<td>Diagonal</td>
<td>24</td>
<td>54</td>
<td>96</td>
<td>150</td>
<td>600</td>
<td>2400</td>
<td>60000</td>
</tr>
<tr>
<td>Common Dynamic</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>60</td>
<td>120</td>
<td>600</td>
</tr>
<tr>
<td>CCC (GARCH and correlations)</td>
<td>12</td>
<td>18</td>
<td>24</td>
<td>30</td>
<td>60</td>
<td>120</td>
<td>600</td>
</tr>
<tr>
<td>DCC (GARCH and correlations)</td>
<td>6</td>
<td>9</td>
<td>12</td>
<td>15</td>
<td>30</td>
<td>60</td>
<td>300</td>
</tr>
<tr>
<td>Diagonal BEKK(1,1)</td>
<td>11</td>
<td>22</td>
<td>42</td>
<td>65</td>
<td>255</td>
<td>1010</td>
<td>25050</td>
</tr>
<tr>
<td>Triangular BEKK(1,1)</td>
<td>9</td>
<td>18</td>
<td>30</td>
<td>45</td>
<td>165</td>
<td>630</td>
<td>15150</td>
</tr>
<tr>
<td>BEKK(1,1)</td>
<td>9</td>
<td>18</td>
<td>30</td>
<td>45</td>
<td>165</td>
<td>630</td>
<td>15150</td>
</tr>
<tr>
<td>Diagonal Vech(1,1)</td>
<td>21</td>
<td>78</td>
<td>210</td>
<td>465</td>
<td>6105</td>
<td>88410</td>
<td>&gt;5×10^6</td>
</tr>
<tr>
<td>Vech(1,1)</td>
<td>21</td>
<td>78</td>
<td>210</td>
<td>465</td>
<td>6105</td>
<td>88410</td>
<td>&gt;5×10^6</td>
</tr>
</tbody>
</table>

Table 1: model dimension

<table>
<thead>
<tr>
<th></th>
<th>(\omega)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>DAX Coeff.</td>
<td>0.074</td>
<td>0.143</td>
<td>0.833</td>
</tr>
<tr>
<td>100*St.dev.</td>
<td>0.429</td>
<td>0.338</td>
<td>0.467</td>
</tr>
<tr>
<td>FTSE Coeff.</td>
<td>0.009</td>
<td>0.087</td>
<td>0.908</td>
</tr>
<tr>
<td>100*St.dev.</td>
<td>0.010</td>
<td>0.039</td>
<td>0.042</td>
</tr>
<tr>
<td>Correlation</td>
<td>0.715</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Log-Likelihood</td>
<td>-1708.484</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: CCC-GARCH estimates
<table>
<thead>
<tr>
<th></th>
<th>DAX</th>
<th>FTSE</th>
<th>DAX</th>
<th>FTSE</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\omega$</td>
<td>Coeff. 0.018</td>
<td>0.010</td>
<td>$\Psi_1$ (DAX)</td>
<td>Coeff. 0.000</td>
</tr>
<tr>
<td></td>
<td>St.dev. 1.8E-04</td>
<td>1.6E-04</td>
<td>St.dev. 2.1E-03</td>
<td>6.3E-03</td>
</tr>
<tr>
<td>B (DAX)</td>
<td>Coeff. 0.940</td>
<td>0.000</td>
<td>$\Psi_2$ (DAX)</td>
<td>Coeff. 0.013</td>
</tr>
<tr>
<td></td>
<td>St.dev. 3.3E-05</td>
<td>2.1E-03</td>
<td>St.dev. 1.3E-03</td>
<td>2.2E-03</td>
</tr>
<tr>
<td>B (FTSE)</td>
<td>Coeff. 0.000</td>
<td>0.926</td>
<td>$\Psi_1$ (FTSE)</td>
<td>Coeff. 0.000</td>
</tr>
<tr>
<td></td>
<td>St.dev. 6.2E-04</td>
<td>1.9E-06</td>
<td>St.dev. 3.0E-03</td>
<td>1.4E-03</td>
</tr>
<tr>
<td>$A_1$ (DAX)</td>
<td>Coeff. 0.210</td>
<td>0.295</td>
<td>$\Psi_2$ (FTSE)</td>
<td>Coeff. 0.000</td>
</tr>
<tr>
<td></td>
<td>St.dev. 3.6E-03</td>
<td>7.5E-03</td>
<td>St.dev. 1.5E-03</td>
<td>1.5E-03</td>
</tr>
<tr>
<td>$A_1$ (FTSE)</td>
<td>Coeff. 0.056</td>
<td>0.222</td>
<td>$\Psi_3$ (DAX)</td>
<td>Coeff. 0.000</td>
</tr>
<tr>
<td></td>
<td>St.dev. 3.9E-03</td>
<td>4.8E-03</td>
<td>St.dev. 1.6E-03</td>
<td>1.5E-03</td>
</tr>
<tr>
<td>$A_2$ (DAX)</td>
<td>Coeff. 0.000</td>
<td>0.000</td>
<td>$\Psi_3$ (FTSE)</td>
<td>Coeff. 0.157</td>
</tr>
<tr>
<td></td>
<td>St.dev. 4.8E-04</td>
<td>1.4E-03</td>
<td>St.dev. 4.6E-03</td>
<td>9.5E-03</td>
</tr>
<tr>
<td>$A_2$ (FTSE)</td>
<td>Coeff. 0.000</td>
<td>0.007</td>
<td>$\Psi_4$ (DAX)</td>
<td>Coeff. 0.000</td>
</tr>
<tr>
<td></td>
<td>St.dev. 4.7E-04</td>
<td>6.3E-04</td>
<td>St.dev. 2.0E-03</td>
<td>6.2E-03</td>
</tr>
<tr>
<td>$A_3$ (DAX)</td>
<td>Coeff. 0.061</td>
<td>0.000</td>
<td>$\Psi_4$ (FTSE)</td>
<td>Coeff. 0.043</td>
</tr>
<tr>
<td></td>
<td>St.dev. 4.4E-04</td>
<td>1.1E-03</td>
<td>St.dev. 9.7E-03</td>
<td>1.0E-03</td>
</tr>
<tr>
<td>$A_3$ (FTSE)</td>
<td>Coeff. 0.004</td>
<td>0.034</td>
<td>Corr</td>
<td>Coeff. 0.730</td>
</tr>
<tr>
<td></td>
<td>St.dev. 4.7E-04</td>
<td>3.1E-04</td>
<td>St.dev. 3.7E-04</td>
<td></td>
</tr>
<tr>
<td>$A_4$ (DAX)</td>
<td>Coeff. 0.494</td>
<td>0.164</td>
<td>Log-Likelihood</td>
<td>-1620.626</td>
</tr>
<tr>
<td></td>
<td>St.dev. 1.2E-02</td>
<td>2.8E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$A_4$ (FTSE)</td>
<td>Coeff. 0.247</td>
<td>0.175</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>St.dev. 8.8E-03</td>
<td>2.9E-03</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: DAMGARCH estimates